Step |
Hyp |
Ref |
Expression |
1 |
|
subsubg.h |
|
2 |
|
subgrcl |
|
3 |
2
|
adantr |
|
4 |
|
eqid |
|
5 |
4
|
subgss |
|
6 |
5
|
adantl |
|
7 |
1
|
subgbas |
|
8 |
7
|
adantr |
|
9 |
6 8
|
sseqtrrd |
|
10 |
|
eqid |
|
11 |
10
|
subgss |
|
12 |
11
|
adantr |
|
13 |
9 12
|
sstrd |
|
14 |
1
|
oveq1i |
|
15 |
|
ressabs |
|
16 |
14 15
|
eqtrid |
|
17 |
9 16
|
syldan |
|
18 |
|
eqid |
|
19 |
18
|
subggrp |
|
20 |
19
|
adantl |
|
21 |
17 20
|
eqeltrrd |
|
22 |
10
|
issubg |
|
23 |
3 13 21 22
|
syl3anbrc |
|
24 |
23 9
|
jca |
|
25 |
1
|
subggrp |
|
26 |
25
|
adantr |
|
27 |
|
simprr |
|
28 |
7
|
adantr |
|
29 |
27 28
|
sseqtrd |
|
30 |
16
|
adantrl |
|
31 |
|
eqid |
|
32 |
31
|
subggrp |
|
33 |
32
|
ad2antrl |
|
34 |
30 33
|
eqeltrd |
|
35 |
4
|
issubg |
|
36 |
26 29 34 35
|
syl3anbrc |
|
37 |
24 36
|
impbida |
|