| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubg.h |  | 
						
							| 2 |  | subgrcl |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | subgss |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 1 | subgbas |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 6 8 | sseqtrrd |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | subgss |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 9 12 | sstrd |  | 
						
							| 14 | 1 | oveq1i |  | 
						
							| 15 |  | ressabs |  | 
						
							| 16 | 14 15 | eqtrid |  | 
						
							| 17 | 9 16 | syldan |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 | subggrp |  | 
						
							| 20 | 19 | adantl |  | 
						
							| 21 | 17 20 | eqeltrrd |  | 
						
							| 22 | 10 | issubg |  | 
						
							| 23 | 3 13 21 22 | syl3anbrc |  | 
						
							| 24 | 23 9 | jca |  | 
						
							| 25 | 1 | subggrp |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | simprr |  | 
						
							| 28 | 7 | adantr |  | 
						
							| 29 | 27 28 | sseqtrd |  | 
						
							| 30 | 16 | adantrl |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 31 | subggrp |  | 
						
							| 33 | 32 | ad2antrl |  | 
						
							| 34 | 30 33 | eqeltrd |  | 
						
							| 35 | 4 | issubg |  | 
						
							| 36 | 26 29 34 35 | syl3anbrc |  | 
						
							| 37 | 24 36 | impbida |  |