Metamath Proof Explorer


Theorem subsubm

Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypothesis subsubm.h H = G 𝑠 S
Assertion subsubm S SubMnd G A SubMnd H A SubMnd G A S

Proof

Step Hyp Ref Expression
1 subsubm.h H = G 𝑠 S
2 eqid Base H = Base H
3 2 submss A SubMnd H A Base H
4 3 adantl S SubMnd G A SubMnd H A Base H
5 1 submbas S SubMnd G S = Base H
6 5 adantr S SubMnd G A SubMnd H S = Base H
7 4 6 sseqtrrd S SubMnd G A SubMnd H A S
8 eqid Base G = Base G
9 8 submss S SubMnd G S Base G
10 9 adantr S SubMnd G A SubMnd H S Base G
11 7 10 sstrd S SubMnd G A SubMnd H A Base G
12 eqid 0 G = 0 G
13 1 12 subm0 S SubMnd G 0 G = 0 H
14 13 adantr S SubMnd G A SubMnd H 0 G = 0 H
15 eqid 0 H = 0 H
16 15 subm0cl A SubMnd H 0 H A
17 16 adantl S SubMnd G A SubMnd H 0 H A
18 14 17 eqeltrd S SubMnd G A SubMnd H 0 G A
19 1 oveq1i H 𝑠 A = G 𝑠 S 𝑠 A
20 ressabs S SubMnd G A S G 𝑠 S 𝑠 A = G 𝑠 A
21 19 20 eqtrid S SubMnd G A S H 𝑠 A = G 𝑠 A
22 7 21 syldan S SubMnd G A SubMnd H H 𝑠 A = G 𝑠 A
23 eqid H 𝑠 A = H 𝑠 A
24 23 submmnd A SubMnd H H 𝑠 A Mnd
25 24 adantl S SubMnd G A SubMnd H H 𝑠 A Mnd
26 22 25 eqeltrrd S SubMnd G A SubMnd H G 𝑠 A Mnd
27 submrcl S SubMnd G G Mnd
28 27 adantr S SubMnd G A SubMnd H G Mnd
29 eqid G 𝑠 A = G 𝑠 A
30 8 12 29 issubm2 G Mnd A SubMnd G A Base G 0 G A G 𝑠 A Mnd
31 28 30 syl S SubMnd G A SubMnd H A SubMnd G A Base G 0 G A G 𝑠 A Mnd
32 11 18 26 31 mpbir3and S SubMnd G A SubMnd H A SubMnd G
33 32 7 jca S SubMnd G A SubMnd H A SubMnd G A S
34 simprr S SubMnd G A SubMnd G A S A S
35 5 adantr S SubMnd G A SubMnd G A S S = Base H
36 34 35 sseqtrd S SubMnd G A SubMnd G A S A Base H
37 13 adantr S SubMnd G A SubMnd G A S 0 G = 0 H
38 12 subm0cl A SubMnd G 0 G A
39 38 ad2antrl S SubMnd G A SubMnd G A S 0 G A
40 37 39 eqeltrrd S SubMnd G A SubMnd G A S 0 H A
41 21 adantrl S SubMnd G A SubMnd G A S H 𝑠 A = G 𝑠 A
42 29 submmnd A SubMnd G G 𝑠 A Mnd
43 42 ad2antrl S SubMnd G A SubMnd G A S G 𝑠 A Mnd
44 41 43 eqeltrd S SubMnd G A SubMnd G A S H 𝑠 A Mnd
45 1 submmnd S SubMnd G H Mnd
46 45 adantr S SubMnd G A SubMnd G A S H Mnd
47 2 15 23 issubm2 H Mnd A SubMnd H A Base H 0 H A H 𝑠 A Mnd
48 46 47 syl S SubMnd G A SubMnd G A S A SubMnd H A Base H 0 H A H 𝑠 A Mnd
49 36 40 44 48 mpbir3and S SubMnd G A SubMnd G A S A SubMnd H
50 33 49 impbida S SubMnd G A SubMnd H A SubMnd G A S