Step |
Hyp |
Ref |
Expression |
1 |
|
subsubm.h |
|
2 |
|
eqid |
|
3 |
2
|
submss |
|
4 |
3
|
adantl |
|
5 |
1
|
submbas |
|
6 |
5
|
adantr |
|
7 |
4 6
|
sseqtrrd |
|
8 |
|
eqid |
|
9 |
8
|
submss |
|
10 |
9
|
adantr |
|
11 |
7 10
|
sstrd |
|
12 |
|
eqid |
|
13 |
1 12
|
subm0 |
|
14 |
13
|
adantr |
|
15 |
|
eqid |
|
16 |
15
|
subm0cl |
|
17 |
16
|
adantl |
|
18 |
14 17
|
eqeltrd |
|
19 |
1
|
oveq1i |
|
20 |
|
ressabs |
|
21 |
19 20
|
eqtrid |
|
22 |
7 21
|
syldan |
|
23 |
|
eqid |
|
24 |
23
|
submmnd |
|
25 |
24
|
adantl |
|
26 |
22 25
|
eqeltrrd |
|
27 |
|
submrcl |
|
28 |
27
|
adantr |
|
29 |
|
eqid |
|
30 |
8 12 29
|
issubm2 |
|
31 |
28 30
|
syl |
|
32 |
11 18 26 31
|
mpbir3and |
|
33 |
32 7
|
jca |
|
34 |
|
simprr |
|
35 |
5
|
adantr |
|
36 |
34 35
|
sseqtrd |
|
37 |
13
|
adantr |
|
38 |
12
|
subm0cl |
|
39 |
38
|
ad2antrl |
|
40 |
37 39
|
eqeltrrd |
|
41 |
21
|
adantrl |
|
42 |
29
|
submmnd |
|
43 |
42
|
ad2antrl |
|
44 |
41 43
|
eqeltrd |
|
45 |
1
|
submmnd |
|
46 |
45
|
adantr |
|
47 |
2 15 23
|
issubm2 |
|
48 |
46 47
|
syl |
|
49 |
36 40 44 48
|
mpbir3and |
|
50 |
33 49
|
impbida |
|