Step |
Hyp |
Ref |
Expression |
1 |
|
subsubrg.s |
|
2 |
|
subrgrcl |
|
3 |
2
|
adantr |
|
4 |
|
eqid |
|
5 |
4
|
subrgss |
|
6 |
5
|
adantl |
|
7 |
1
|
subrgbas |
|
8 |
7
|
adantr |
|
9 |
6 8
|
sseqtrrd |
|
10 |
1
|
oveq1i |
|
11 |
|
ressabs |
|
12 |
10 11
|
eqtrid |
|
13 |
9 12
|
syldan |
|
14 |
|
eqid |
|
15 |
14
|
subrgring |
|
16 |
15
|
adantl |
|
17 |
13 16
|
eqeltrrd |
|
18 |
|
eqid |
|
19 |
18
|
subrgss |
|
20 |
19
|
adantr |
|
21 |
9 20
|
sstrd |
|
22 |
|
eqid |
|
23 |
1 22
|
subrg1 |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
25
|
subrg1cl |
|
27 |
26
|
adantl |
|
28 |
24 27
|
eqeltrd |
|
29 |
21 28
|
jca |
|
30 |
18 22
|
issubrg |
|
31 |
3 17 29 30
|
syl21anbrc |
|
32 |
31 9
|
jca |
|
33 |
1
|
subrgring |
|
34 |
33
|
adantr |
|
35 |
12
|
adantrl |
|
36 |
|
eqid |
|
37 |
36
|
subrgring |
|
38 |
37
|
ad2antrl |
|
39 |
35 38
|
eqeltrd |
|
40 |
|
simprr |
|
41 |
7
|
adantr |
|
42 |
40 41
|
sseqtrd |
|
43 |
23
|
adantr |
|
44 |
22
|
subrg1cl |
|
45 |
44
|
ad2antrl |
|
46 |
43 45
|
eqeltrrd |
|
47 |
42 46
|
jca |
|
48 |
4 25
|
issubrg |
|
49 |
34 39 47 48
|
syl21anbrc |
|
50 |
32 49
|
impbida |
|