Metamath Proof Explorer


Theorem subsubrg

Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypothesis subsubrg.s S = R 𝑠 A
Assertion subsubrg A SubRing R B SubRing S B SubRing R B A

Proof

Step Hyp Ref Expression
1 subsubrg.s S = R 𝑠 A
2 subrgrcl A SubRing R R Ring
3 2 adantr A SubRing R B SubRing S R Ring
4 eqid Base S = Base S
5 4 subrgss B SubRing S B Base S
6 5 adantl A SubRing R B SubRing S B Base S
7 1 subrgbas A SubRing R A = Base S
8 7 adantr A SubRing R B SubRing S A = Base S
9 6 8 sseqtrrd A SubRing R B SubRing S B A
10 1 oveq1i S 𝑠 B = R 𝑠 A 𝑠 B
11 ressabs A SubRing R B A R 𝑠 A 𝑠 B = R 𝑠 B
12 10 11 eqtrid A SubRing R B A S 𝑠 B = R 𝑠 B
13 9 12 syldan A SubRing R B SubRing S S 𝑠 B = R 𝑠 B
14 eqid S 𝑠 B = S 𝑠 B
15 14 subrgring B SubRing S S 𝑠 B Ring
16 15 adantl A SubRing R B SubRing S S 𝑠 B Ring
17 13 16 eqeltrrd A SubRing R B SubRing S R 𝑠 B Ring
18 eqid Base R = Base R
19 18 subrgss A SubRing R A Base R
20 19 adantr A SubRing R B SubRing S A Base R
21 9 20 sstrd A SubRing R B SubRing S B Base R
22 eqid 1 R = 1 R
23 1 22 subrg1 A SubRing R 1 R = 1 S
24 23 adantr A SubRing R B SubRing S 1 R = 1 S
25 eqid 1 S = 1 S
26 25 subrg1cl B SubRing S 1 S B
27 26 adantl A SubRing R B SubRing S 1 S B
28 24 27 eqeltrd A SubRing R B SubRing S 1 R B
29 21 28 jca A SubRing R B SubRing S B Base R 1 R B
30 18 22 issubrg B SubRing R R Ring R 𝑠 B Ring B Base R 1 R B
31 3 17 29 30 syl21anbrc A SubRing R B SubRing S B SubRing R
32 31 9 jca A SubRing R B SubRing S B SubRing R B A
33 1 subrgring A SubRing R S Ring
34 33 adantr A SubRing R B SubRing R B A S Ring
35 12 adantrl A SubRing R B SubRing R B A S 𝑠 B = R 𝑠 B
36 eqid R 𝑠 B = R 𝑠 B
37 36 subrgring B SubRing R R 𝑠 B Ring
38 37 ad2antrl A SubRing R B SubRing R B A R 𝑠 B Ring
39 35 38 eqeltrd A SubRing R B SubRing R B A S 𝑠 B Ring
40 simprr A SubRing R B SubRing R B A B A
41 7 adantr A SubRing R B SubRing R B A A = Base S
42 40 41 sseqtrd A SubRing R B SubRing R B A B Base S
43 23 adantr A SubRing R B SubRing R B A 1 R = 1 S
44 22 subrg1cl B SubRing R 1 R B
45 44 ad2antrl A SubRing R B SubRing R B A 1 R B
46 43 45 eqeltrrd A SubRing R B SubRing R B A 1 S B
47 42 46 jca A SubRing R B SubRing R B A B Base S 1 S B
48 4 25 issubrg B SubRing S S Ring S 𝑠 B Ring B Base S 1 S B
49 34 39 47 48 syl21anbrc A SubRing R B SubRing R B A B SubRing S
50 32 49 impbida A SubRing R B SubRing S B SubRing R B A