Metamath Proof Explorer


Theorem subsubrng

Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypothesis subsubrng.s S = R 𝑠 A
Assertion subsubrng A SubRng R B SubRng S B SubRng R B A

Proof

Step Hyp Ref Expression
1 subsubrng.s S = R 𝑠 A
2 subrngrcl A SubRng R R Rng
3 2 adantr A SubRng R B SubRng S R Rng
4 eqid Base S = Base S
5 4 subrngss B SubRng S B Base S
6 5 adantl A SubRng R B SubRng S B Base S
7 1 subrngbas A SubRng R A = Base S
8 7 adantr A SubRng R B SubRng S A = Base S
9 6 8 sseqtrrd A SubRng R B SubRng S B A
10 1 oveq1i S 𝑠 B = R 𝑠 A 𝑠 B
11 ressabs A SubRng R B A R 𝑠 A 𝑠 B = R 𝑠 B
12 10 11 eqtrid A SubRng R B A S 𝑠 B = R 𝑠 B
13 9 12 syldan A SubRng R B SubRng S S 𝑠 B = R 𝑠 B
14 eqid S 𝑠 B = S 𝑠 B
15 14 subrngrng B SubRng S S 𝑠 B Rng
16 15 adantl A SubRng R B SubRng S S 𝑠 B Rng
17 13 16 eqeltrrd A SubRng R B SubRng S R 𝑠 B Rng
18 eqid Base R = Base R
19 18 subrngss A SubRng R A Base R
20 19 adantr A SubRng R B SubRng S A Base R
21 9 20 sstrd A SubRng R B SubRng S B Base R
22 18 issubrng B SubRng R R Rng R 𝑠 B Rng B Base R
23 3 17 21 22 syl3anbrc A SubRng R B SubRng S B SubRng R
24 23 9 jca A SubRng R B SubRng S B SubRng R B A
25 1 subrngrng A SubRng R S Rng
26 25 adantr A SubRng R B SubRng R B A S Rng
27 12 adantrl A SubRng R B SubRng R B A S 𝑠 B = R 𝑠 B
28 eqid R 𝑠 B = R 𝑠 B
29 28 subrngrng B SubRng R R 𝑠 B Rng
30 29 ad2antrl A SubRng R B SubRng R B A R 𝑠 B Rng
31 27 30 eqeltrd A SubRng R B SubRng R B A S 𝑠 B Rng
32 simprr A SubRng R B SubRng R B A B A
33 7 adantr A SubRng R B SubRng R B A A = Base S
34 32 33 sseqtrd A SubRng R B SubRng R B A B Base S
35 4 issubrng B SubRng S S Rng S 𝑠 B Rng B Base S
36 26 31 34 35 syl3anbrc A SubRng R B SubRng R B A B SubRng S
37 24 36 impbida A SubRng R B SubRng S B SubRng R B A