Metamath Proof Explorer


Theorem subsubs2d

Description: Law for double surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses subsubs4d.1 φ A No
subsubs4d.2 φ B No
subsubs4d.3 φ C No
Assertion subsubs2d Could not format assertion : No typesetting found for |- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 subsubs4d.1 φ A No
2 subsubs4d.2 φ B No
3 subsubs4d.3 φ C No
4 2 3 subscld Could not format ( ph -> ( B -s C ) e. No ) : No typesetting found for |- ( ph -> ( B -s C ) e. No ) with typecode |-
5 1 4 subsvald Could not format ( ph -> ( A -s ( B -s C ) ) = ( A +s ( -us ` ( B -s C ) ) ) ) : No typesetting found for |- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( -us ` ( B -s C ) ) ) ) with typecode |-
6 2 3 negsubsdi2d Could not format ( ph -> ( -us ` ( B -s C ) ) = ( C -s B ) ) : No typesetting found for |- ( ph -> ( -us ` ( B -s C ) ) = ( C -s B ) ) with typecode |-
7 6 oveq2d Could not format ( ph -> ( A +s ( -us ` ( B -s C ) ) ) = ( A +s ( C -s B ) ) ) : No typesetting found for |- ( ph -> ( A +s ( -us ` ( B -s C ) ) ) = ( A +s ( C -s B ) ) ) with typecode |-
8 5 7 eqtrd Could not format ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) ) : No typesetting found for |- ( ph -> ( A -s ( B -s C ) ) = ( A +s ( C -s B ) ) ) with typecode |-