| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subthinc.1 |
|
| 2 |
|
subthinc.j |
|
| 3 |
|
subthinc.c |
|
| 4 |
|
eqid |
|
| 5 |
|
eqidd |
|
| 6 |
2 5
|
subcfn |
|
| 7 |
2 6 4
|
subcss1 |
|
| 8 |
1 4 3 6 7
|
rescbas |
|
| 9 |
1 4 3 6 7
|
reschom |
|
| 10 |
2
|
adantr |
|
| 11 |
6
|
adantr |
|
| 12 |
|
eqid |
|
| 13 |
|
simprl |
|
| 14 |
|
simprr |
|
| 15 |
10 11 12 13 14
|
subcss2 |
|
| 16 |
3
|
adantr |
|
| 17 |
7
|
adantr |
|
| 18 |
17 13
|
sseldd |
|
| 19 |
17 14
|
sseldd |
|
| 20 |
16 18 19 4 12
|
thincmo |
|
| 21 |
|
mosssn2 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
|
sstr2 |
|
| 24 |
23
|
eximdv |
|
| 25 |
15 22 24
|
sylc |
|
| 26 |
|
mosssn2 |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
1 2
|
subccat |
|
| 29 |
8 9 27 28
|
isthincd |
|