Metamath Proof Explorer


Theorem subthinc

Description: A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses subthinc.1 D = C cat J
subthinc.j φ J Subcat C
subthinc.c No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
Assertion subthinc Could not format assertion : No typesetting found for |- ( ph -> D e. ThinCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 subthinc.1 D = C cat J
2 subthinc.j φ J Subcat C
3 subthinc.c Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-
4 eqid Base C = Base C
5 eqidd φ dom dom J = dom dom J
6 2 5 subcfn φ J Fn dom dom J × dom dom J
7 2 6 4 subcss1 φ dom dom J Base C
8 1 4 3 6 7 rescbas φ dom dom J = Base D
9 1 4 3 6 7 reschom φ J = Hom D
10 2 adantr φ x dom dom J y dom dom J J Subcat C
11 6 adantr φ x dom dom J y dom dom J J Fn dom dom J × dom dom J
12 eqid Hom C = Hom C
13 simprl φ x dom dom J y dom dom J x dom dom J
14 simprr φ x dom dom J y dom dom J y dom dom J
15 10 11 12 13 14 subcss2 φ x dom dom J y dom dom J x J y x Hom C y
16 3 adantr Could not format ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( ph /\ ( x e. dom dom J /\ y e. dom dom J ) ) -> C e. ThinCat ) with typecode |-
17 7 adantr φ x dom dom J y dom dom J dom dom J Base C
18 17 13 sseldd φ x dom dom J y dom dom J x Base C
19 17 14 sseldd φ x dom dom J y dom dom J y Base C
20 16 18 19 4 12 thincmo φ x dom dom J y dom dom J * f f x Hom C y
21 mosssn2 * f f x Hom C y f x Hom C y f
22 20 21 sylib φ x dom dom J y dom dom J f x Hom C y f
23 sstr2 x J y x Hom C y x Hom C y f x J y f
24 23 eximdv x J y x Hom C y f x Hom C y f f x J y f
25 15 22 24 sylc φ x dom dom J y dom dom J f x J y f
26 mosssn2 * f f x J y f x J y f
27 25 26 sylibr φ x dom dom J y dom dom J * f f x J y
28 1 2 subccat φ D Cat
29 8 9 27 28 isthincd Could not format ( ph -> D e. ThinCat ) : No typesetting found for |- ( ph -> D e. ThinCat ) with typecode |-