Metamath Proof Explorer


Theorem subumgr

Description: A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020)

Ref Expression
Assertion subumgr G UMGraph S SubGraph G S UMGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx S = Vtx S
2 eqid Vtx G = Vtx G
3 eqid iEdg S = iEdg S
4 eqid iEdg G = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
7 umgruhgr G UMGraph G UHGraph
8 subgruhgrfun G UHGraph S SubGraph G Fun iEdg S
9 7 8 sylan G UMGraph S SubGraph G Fun iEdg S
10 9 ancoms S SubGraph G G UMGraph Fun iEdg S
11 10 funfnd S SubGraph G G UMGraph iEdg S Fn dom iEdg S
12 11 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph iEdg S Fn dom iEdg S
13 simplrl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph x dom iEdg S S SubGraph G
14 simplrr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph x dom iEdg S G UMGraph
15 simpr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph x dom iEdg S x dom iEdg S
16 1 3 subumgredg2 S SubGraph G G UMGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2
17 13 14 15 16 syl3anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2
18 17 ralrimiva Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2
19 fnfvrnss iEdg S Fn dom iEdg S x dom iEdg S iEdg S x e 𝒫 Vtx S | e = 2 ran iEdg S e 𝒫 Vtx S | e = 2
20 12 18 19 syl2anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph ran iEdg S e 𝒫 Vtx S | e = 2
21 df-f iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2 iEdg S Fn dom iEdg S ran iEdg S e 𝒫 Vtx S | e = 2
22 12 20 21 sylanbrc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2
23 subgrv S SubGraph G S V G V
24 1 3 isumgrs S V S UMGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2
25 24 adantr S V G V S UMGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2
26 23 25 syl S SubGraph G S UMGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2
27 26 ad2antrl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph S UMGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e = 2
28 22 27 mpbird Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph S UMGraph
29 28 ex Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UMGraph S UMGraph
30 6 29 syl S SubGraph G S SubGraph G G UMGraph S UMGraph
31 30 anabsi8 G UMGraph S SubGraph G S UMGraph