Metamath Proof Explorer


Theorem subumgredg2

Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020)

Ref Expression
Hypotheses subumgredg2.v V = Vtx S
subumgredg2.i I = iEdg S
Assertion subumgredg2 S SubGraph G G UMGraph X dom I I X e 𝒫 V | e = 2

Proof

Step Hyp Ref Expression
1 subumgredg2.v V = Vtx S
2 subumgredg2.i I = iEdg S
3 fveqeq2 e = I X e = 2 I X = 2
4 umgruhgr G UMGraph G UHGraph
5 4 3ad2ant2 S SubGraph G G UMGraph X dom I G UHGraph
6 simp1 S SubGraph G G UMGraph X dom I S SubGraph G
7 simp3 S SubGraph G G UMGraph X dom I X dom I
8 1 2 5 6 7 subgruhgredgd S SubGraph G G UMGraph X dom I I X 𝒫 V
9 eqid iEdg G = iEdg G
10 9 uhgrfun G UHGraph Fun iEdg G
11 4 10 syl G UMGraph Fun iEdg G
12 11 3ad2ant2 S SubGraph G G UMGraph X dom I Fun iEdg G
13 eqid Vtx S = Vtx S
14 eqid Vtx G = Vtx G
15 eqid Edg S = Edg S
16 13 14 2 9 15 subgrprop2 S SubGraph G Vtx S Vtx G I iEdg G Edg S 𝒫 Vtx S
17 16 simp2d S SubGraph G I iEdg G
18 17 3ad2ant1 S SubGraph G G UMGraph X dom I I iEdg G
19 funssfv Fun iEdg G I iEdg G X dom I iEdg G X = I X
20 19 eqcomd Fun iEdg G I iEdg G X dom I I X = iEdg G X
21 12 18 7 20 syl3anc S SubGraph G G UMGraph X dom I I X = iEdg G X
22 21 fveq2d S SubGraph G G UMGraph X dom I I X = iEdg G X
23 simp2 S SubGraph G G UMGraph X dom I G UMGraph
24 2 dmeqi dom I = dom iEdg S
25 24 eleq2i X dom I X dom iEdg S
26 subgreldmiedg S SubGraph G X dom iEdg S X dom iEdg G
27 26 ex S SubGraph G X dom iEdg S X dom iEdg G
28 25 27 syl5bi S SubGraph G X dom I X dom iEdg G
29 28 a1d S SubGraph G G UMGraph X dom I X dom iEdg G
30 29 3imp S SubGraph G G UMGraph X dom I X dom iEdg G
31 14 9 umgredg2 G UMGraph X dom iEdg G iEdg G X = 2
32 23 30 31 syl2anc S SubGraph G G UMGraph X dom I iEdg G X = 2
33 22 32 eqtrd S SubGraph G G UMGraph X dom I I X = 2
34 3 8 33 elrabd S SubGraph G G UMGraph X dom I I X e 𝒫 V | e = 2
35 prprrab e 𝒫 V | e = 2 = e 𝒫 V | e = 2
36 34 35 eleqtrdi S SubGraph G G UMGraph X dom I I X e 𝒫 V | e = 2