Metamath Proof Explorer


Theorem subupgr

Description: A subgraph of a pseudograph is a pseudograph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)

Ref Expression
Assertion subupgr G UPGraph S SubGraph G S UPGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx S = Vtx S
2 eqid Vtx G = Vtx G
3 eqid iEdg S = iEdg S
4 eqid iEdg G = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S
7 upgruhgr G UPGraph G UHGraph
8 subgruhgrfun G UHGraph S SubGraph G Fun iEdg S
9 7 8 sylan G UPGraph S SubGraph G Fun iEdg S
10 9 ancoms S SubGraph G G UPGraph Fun iEdg S
11 10 funfnd S SubGraph G G UPGraph iEdg S Fn dom iEdg S
12 11 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph iEdg S Fn dom iEdg S
13 fveq2 e = iEdg S x e = iEdg S x
14 13 breq1d e = iEdg S x e 2 iEdg S x 2
15 7 anim2i S SubGraph G G UPGraph S SubGraph G G UHGraph
16 15 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph S SubGraph G G UHGraph
17 16 ancomd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph G UHGraph S SubGraph G
18 17 anim1i Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S G UHGraph S SubGraph G x dom iEdg S
19 18 simplld Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S G UHGraph
20 simpl S SubGraph G G UPGraph S SubGraph G
21 20 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph S SubGraph G
22 21 adantr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S S SubGraph G
23 simpr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S x dom iEdg S
24 1 3 19 22 23 subgruhgredgd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S x 𝒫 Vtx S
25 4 uhgrfun G UHGraph Fun iEdg G
26 7 25 syl G UPGraph Fun iEdg G
27 26 ad2antll Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph Fun iEdg G
28 27 adantr Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S Fun iEdg G
29 simpll2 Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S iEdg G
30 funssfv Fun iEdg G iEdg S iEdg G x dom iEdg S iEdg G x = iEdg S x
31 28 29 23 30 syl3anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg G x = iEdg S x
32 31 eqcomd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S x = iEdg G x
33 32 fveq2d Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S x = iEdg G x
34 subgreldmiedg S SubGraph G x dom iEdg S x dom iEdg G
35 34 ex S SubGraph G x dom iEdg S x dom iEdg G
36 35 adantr S SubGraph G G UPGraph x dom iEdg S x dom iEdg G
37 36 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S x dom iEdg G
38 simpr x dom iEdg G G UPGraph G UPGraph
39 26 funfnd G UPGraph iEdg G Fn dom iEdg G
40 39 adantl x dom iEdg G G UPGraph iEdg G Fn dom iEdg G
41 simpl x dom iEdg G G UPGraph x dom iEdg G
42 2 4 upgrle G UPGraph iEdg G Fn dom iEdg G x dom iEdg G iEdg G x 2
43 38 40 41 42 syl3anc x dom iEdg G G UPGraph iEdg G x 2
44 43 expcom G UPGraph x dom iEdg G iEdg G x 2
45 44 ad2antll Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg G iEdg G x 2
46 37 45 syld Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg G x 2
47 46 imp Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg G x 2
48 33 47 eqbrtrd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S x 2
49 14 24 48 elrabd Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e 2
50 49 ralrimiva Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph x dom iEdg S iEdg S x e 𝒫 Vtx S | e 2
51 fnfvrnss iEdg S Fn dom iEdg S x dom iEdg S iEdg S x e 𝒫 Vtx S | e 2 ran iEdg S e 𝒫 Vtx S | e 2
52 12 50 51 syl2anc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph ran iEdg S e 𝒫 Vtx S | e 2
53 df-f iEdg S : dom iEdg S e 𝒫 Vtx S | e 2 iEdg S Fn dom iEdg S ran iEdg S e 𝒫 Vtx S | e 2
54 12 52 53 sylanbrc Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e 2
55 subgrv S SubGraph G S V G V
56 1 3 isupgr S V S UPGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e 2
57 56 adantr S V G V S UPGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e 2
58 55 57 syl S SubGraph G S UPGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e 2
59 58 adantr S SubGraph G G UPGraph S UPGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e 2
60 59 adantl Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph S UPGraph iEdg S : dom iEdg S e 𝒫 Vtx S | e 2
61 54 60 mpbird Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph S UPGraph
62 61 ex Vtx S Vtx G iEdg S iEdg G Edg S 𝒫 Vtx S S SubGraph G G UPGraph S UPGraph
63 6 62 syl S SubGraph G S SubGraph G G UPGraph S UPGraph
64 63 anabsi8 G UPGraph S SubGraph G S UPGraph