Metamath Proof Explorer


Theorem suc11

Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of Enderton p. 194. (Contributed by NM, 3-Sep-2003)

Ref Expression
Assertion suc11 A On B On suc A = suc B A = B

Proof

Step Hyp Ref Expression
1 eloni A On Ord A
2 ordn2lp Ord A ¬ A B B A
3 pm3.13 ¬ A B B A ¬ A B ¬ B A
4 1 2 3 3syl A On ¬ A B ¬ B A
5 4 adantr A On B On ¬ A B ¬ B A
6 eqimss suc A = suc B suc A suc B
7 sucssel A On suc A suc B A suc B
8 6 7 syl5 A On suc A = suc B A suc B
9 elsuci A suc B A B A = B
10 9 ord A suc B ¬ A B A = B
11 10 com12 ¬ A B A suc B A = B
12 8 11 syl9 A On ¬ A B suc A = suc B A = B
13 eqimss2 suc A = suc B suc B suc A
14 sucssel B On suc B suc A B suc A
15 13 14 syl5 B On suc A = suc B B suc A
16 elsuci B suc A B A B = A
17 16 ord B suc A ¬ B A B = A
18 eqcom B = A A = B
19 17 18 syl6ib B suc A ¬ B A A = B
20 19 com12 ¬ B A B suc A A = B
21 15 20 syl9 B On ¬ B A suc A = suc B A = B
22 12 21 jaao A On B On ¬ A B ¬ B A suc A = suc B A = B
23 5 22 mpd A On B On suc A = suc B A = B
24 suceq A = B suc A = suc B
25 23 24 impbid1 A On B On suc A = suc B A = B