Metamath Proof Explorer


Theorem sucdom

Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion sucdom A ω A B suc A B

Proof

Step Hyp Ref Expression
1 sucdom2 A B suc A B
2 nnfi A ω A Fin
3 php4 A ω A suc A
4 sdomdomtrfi A Fin A suc A suc A B A B
5 4 3expia A Fin A suc A suc A B A B
6 2 3 5 syl2anc A ω suc A B A B
7 1 6 impbid2 A ω A B suc A B