Metamath Proof Explorer


Theorem sucdom

Description: Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013)

Ref Expression
Assertion sucdom A ω A B suc A B

Proof

Step Hyp Ref Expression
1 sucdom2 A B suc A B
2 php4 A ω A suc A
3 sdomdomtr A suc A suc A B A B
4 3 ex A suc A suc A B A B
5 2 4 syl A ω suc A B A B
6 1 5 impbid2 A ω A B suc A B