| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
|
| 2 |
|
brdomi |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
vex |
|
| 5 |
4
|
rnex |
|
| 6 |
|
f1f1orn |
|
| 7 |
6
|
adantl |
|
| 8 |
|
f1of1 |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
f1dom3g |
|
| 11 |
4 5 9 10
|
mp3an12i |
|
| 12 |
|
sdomnen |
|
| 13 |
12
|
adantr |
|
| 14 |
|
ssdif0 |
|
| 15 |
|
simplr |
|
| 16 |
|
f1f |
|
| 17 |
16
|
frnd |
|
| 18 |
15 17
|
syl |
|
| 19 |
|
simpr |
|
| 20 |
18 19
|
eqssd |
|
| 21 |
|
dff1o5 |
|
| 22 |
15 20 21
|
sylanbrc |
|
| 23 |
|
f1oen3g |
|
| 24 |
4 22 23
|
sylancr |
|
| 25 |
24
|
ex |
|
| 26 |
14 25
|
biimtrrid |
|
| 27 |
13 26
|
mtod |
|
| 28 |
|
neq0 |
|
| 29 |
27 28
|
sylib |
|
| 30 |
|
snssi |
|
| 31 |
|
relsdom |
|
| 32 |
31
|
brrelex1i |
|
| 33 |
32
|
adantr |
|
| 34 |
|
vex |
|
| 35 |
|
en2sn |
|
| 36 |
33 34 35
|
sylancl |
|
| 37 |
31
|
brrelex2i |
|
| 38 |
37
|
adantr |
|
| 39 |
|
difexg |
|
| 40 |
|
snfi |
|
| 41 |
|
ssdomfi2 |
|
| 42 |
40 41
|
mp3an1 |
|
| 43 |
42
|
ex |
|
| 44 |
38 39 43
|
3syl |
|
| 45 |
|
endom |
|
| 46 |
|
domtrfi |
|
| 47 |
40 46
|
mp3an1 |
|
| 48 |
45 47
|
sylan |
|
| 49 |
36 44 48
|
syl6an |
|
| 50 |
30 49
|
syl5 |
|
| 51 |
50
|
exlimdv |
|
| 52 |
29 51
|
mpd |
|
| 53 |
|
disjdif |
|
| 54 |
53
|
a1i |
|
| 55 |
|
undom |
|
| 56 |
11 52 54 55
|
syl21anc |
|
| 57 |
|
df-suc |
|
| 58 |
57
|
a1i |
|
| 59 |
|
undif2 |
|
| 60 |
17
|
adantl |
|
| 61 |
|
ssequn1 |
|
| 62 |
60 61
|
sylib |
|
| 63 |
59 62
|
eqtr2id |
|
| 64 |
56 58 63
|
3brtr4d |
|
| 65 |
3 64
|
exlimddv |
|