Step |
Hyp |
Ref |
Expression |
1 |
|
sdomdom |
|
2 |
|
brdomi |
|
3 |
1 2
|
syl |
|
4 |
|
relsdom |
|
5 |
4
|
brrelex1i |
|
6 |
5
|
adantr |
|
7 |
|
vex |
|
8 |
7
|
rnex |
|
9 |
8
|
a1i |
|
10 |
|
f1f1orn |
|
11 |
10
|
adantl |
|
12 |
|
f1of1 |
|
13 |
11 12
|
syl |
|
14 |
|
f1dom2g |
|
15 |
6 9 13 14
|
syl3anc |
|
16 |
|
sdomnen |
|
17 |
16
|
adantr |
|
18 |
|
ssdif0 |
|
19 |
|
simplr |
|
20 |
|
f1f |
|
21 |
20
|
frnd |
|
22 |
19 21
|
syl |
|
23 |
|
simpr |
|
24 |
22 23
|
eqssd |
|
25 |
|
dff1o5 |
|
26 |
19 24 25
|
sylanbrc |
|
27 |
|
f1oen3g |
|
28 |
7 26 27
|
sylancr |
|
29 |
28
|
ex |
|
30 |
18 29
|
syl5bir |
|
31 |
17 30
|
mtod |
|
32 |
|
neq0 |
|
33 |
31 32
|
sylib |
|
34 |
|
snssi |
|
35 |
|
vex |
|
36 |
|
en2sn |
|
37 |
6 35 36
|
sylancl |
|
38 |
4
|
brrelex2i |
|
39 |
38
|
adantr |
|
40 |
|
difexg |
|
41 |
|
ssdomg |
|
42 |
39 40 41
|
3syl |
|
43 |
|
endomtr |
|
44 |
37 42 43
|
syl6an |
|
45 |
34 44
|
syl5 |
|
46 |
45
|
exlimdv |
|
47 |
33 46
|
mpd |
|
48 |
|
disjdif |
|
49 |
48
|
a1i |
|
50 |
|
undom |
|
51 |
15 47 49 50
|
syl21anc |
|
52 |
|
df-suc |
|
53 |
52
|
a1i |
|
54 |
|
undif2 |
|
55 |
21
|
adantl |
|
56 |
|
ssequn1 |
|
57 |
55 56
|
sylib |
|
58 |
54 57
|
eqtr2id |
|
59 |
51 53 58
|
3brtr4d |
|
60 |
3 59
|
exlimddv |
|