Step |
Hyp |
Ref |
Expression |
1 |
|
sdomdom |
|
2 |
|
brdomi |
|
3 |
1 2
|
syl |
|
4 |
|
vex |
|
5 |
4
|
rnex |
|
6 |
|
f1f1orn |
|
7 |
6
|
adantl |
|
8 |
|
f1of1 |
|
9 |
7 8
|
syl |
|
10 |
|
f1dom3g |
|
11 |
4 5 9 10
|
mp3an12i |
|
12 |
|
sdomnen |
|
13 |
12
|
adantr |
|
14 |
|
ssdif0 |
|
15 |
|
simplr |
|
16 |
|
f1f |
|
17 |
16
|
frnd |
|
18 |
15 17
|
syl |
|
19 |
|
simpr |
|
20 |
18 19
|
eqssd |
|
21 |
|
dff1o5 |
|
22 |
15 20 21
|
sylanbrc |
|
23 |
|
f1oen3g |
|
24 |
4 22 23
|
sylancr |
|
25 |
24
|
ex |
|
26 |
14 25
|
biimtrrid |
|
27 |
13 26
|
mtod |
|
28 |
|
neq0 |
|
29 |
27 28
|
sylib |
|
30 |
|
snssi |
|
31 |
|
relsdom |
|
32 |
31
|
brrelex1i |
|
33 |
32
|
adantr |
|
34 |
|
vex |
|
35 |
|
en2sn |
|
36 |
33 34 35
|
sylancl |
|
37 |
31
|
brrelex2i |
|
38 |
37
|
adantr |
|
39 |
|
difexg |
|
40 |
|
snfi |
|
41 |
|
ssdomfi2 |
|
42 |
40 41
|
mp3an1 |
|
43 |
42
|
ex |
|
44 |
38 39 43
|
3syl |
|
45 |
|
endom |
|
46 |
|
domtrfi |
|
47 |
40 46
|
mp3an1 |
|
48 |
45 47
|
sylan |
|
49 |
36 44 48
|
syl6an |
|
50 |
30 49
|
syl5 |
|
51 |
50
|
exlimdv |
|
52 |
29 51
|
mpd |
|
53 |
|
disjdif |
|
54 |
53
|
a1i |
|
55 |
|
undom |
|
56 |
11 52 54 55
|
syl21anc |
|
57 |
|
df-suc |
|
58 |
57
|
a1i |
|
59 |
|
undif2 |
|
60 |
17
|
adantl |
|
61 |
|
ssequn1 |
|
62 |
60 61
|
sylib |
|
63 |
59 62
|
eqtr2id |
|
64 |
56 58 63
|
3brtr4d |
|
65 |
3 64
|
exlimddv |
|