Metamath Proof Explorer


Theorem sucdom2

Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 4-Dec-2024)

Ref Expression
Assertion sucdom2 A B suc A B

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 brdomi A B f f : A 1-1 B
3 1 2 syl A B f f : A 1-1 B
4 vex f V
5 4 rnex ran f V
6 f1f1orn f : A 1-1 B f : A 1-1 onto ran f
7 6 adantl A B f : A 1-1 B f : A 1-1 onto ran f
8 f1of1 f : A 1-1 onto ran f f : A 1-1 ran f
9 7 8 syl A B f : A 1-1 B f : A 1-1 ran f
10 f1dom3g f V ran f V f : A 1-1 ran f A ran f
11 4 5 9 10 mp3an12i A B f : A 1-1 B A ran f
12 sdomnen A B ¬ A B
13 12 adantr A B f : A 1-1 B ¬ A B
14 ssdif0 B ran f B ran f =
15 simplr A B f : A 1-1 B B ran f f : A 1-1 B
16 f1f f : A 1-1 B f : A B
17 16 frnd f : A 1-1 B ran f B
18 15 17 syl A B f : A 1-1 B B ran f ran f B
19 simpr A B f : A 1-1 B B ran f B ran f
20 18 19 eqssd A B f : A 1-1 B B ran f ran f = B
21 dff1o5 f : A 1-1 onto B f : A 1-1 B ran f = B
22 15 20 21 sylanbrc A B f : A 1-1 B B ran f f : A 1-1 onto B
23 f1oen3g f V f : A 1-1 onto B A B
24 4 22 23 sylancr A B f : A 1-1 B B ran f A B
25 24 ex A B f : A 1-1 B B ran f A B
26 14 25 biimtrrid A B f : A 1-1 B B ran f = A B
27 13 26 mtod A B f : A 1-1 B ¬ B ran f =
28 neq0 ¬ B ran f = w w B ran f
29 27 28 sylib A B f : A 1-1 B w w B ran f
30 snssi w B ran f w B ran f
31 relsdom Rel
32 31 brrelex1i A B A V
33 32 adantr A B f : A 1-1 B A V
34 vex w V
35 en2sn A V w V A w
36 33 34 35 sylancl A B f : A 1-1 B A w
37 31 brrelex2i A B B V
38 37 adantr A B f : A 1-1 B B V
39 difexg B V B ran f V
40 snfi w Fin
41 ssdomfi2 w Fin B ran f V w B ran f w B ran f
42 40 41 mp3an1 B ran f V w B ran f w B ran f
43 42 ex B ran f V w B ran f w B ran f
44 38 39 43 3syl A B f : A 1-1 B w B ran f w B ran f
45 endom A w A w
46 domtrfi w Fin A w w B ran f A B ran f
47 40 46 mp3an1 A w w B ran f A B ran f
48 45 47 sylan A w w B ran f A B ran f
49 36 44 48 syl6an A B f : A 1-1 B w B ran f A B ran f
50 30 49 syl5 A B f : A 1-1 B w B ran f A B ran f
51 50 exlimdv A B f : A 1-1 B w w B ran f A B ran f
52 29 51 mpd A B f : A 1-1 B A B ran f
53 disjdif ran f B ran f =
54 53 a1i A B f : A 1-1 B ran f B ran f =
55 undom A ran f A B ran f ran f B ran f = A A ran f B ran f
56 11 52 54 55 syl21anc A B f : A 1-1 B A A ran f B ran f
57 df-suc suc A = A A
58 57 a1i A B f : A 1-1 B suc A = A A
59 undif2 ran f B ran f = ran f B
60 17 adantl A B f : A 1-1 B ran f B
61 ssequn1 ran f B ran f B = B
62 60 61 sylib A B f : A 1-1 B ran f B = B
63 59 62 eqtr2id A B f : A 1-1 B B = ran f B ran f
64 56 58 63 3brtr4d A B f : A 1-1 B suc A B
65 3 64 exlimddv A B suc A B