Metamath Proof Explorer


Theorem sucel

Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004)

Ref Expression
Assertion sucel sucABxByyxyAy=A

Proof

Step Hyp Ref Expression
1 risset sucABxBx=sucA
2 dfcleq x=sucAyyxysucA
3 vex yV
4 3 elsuc ysucAyAy=A
5 4 bibi2i yxysucAyxyAy=A
6 5 albii yyxysucAyyxyAy=A
7 2 6 bitri x=sucAyyxyAy=A
8 7 rexbii xBx=sucAxByyxyAy=A
9 1 8 bitri sucABxByyxyAy=A