Metamath Proof Explorer


Theorem suceloni

Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of TakeutiZaring p. 41. (Contributed by NM, 6-Jun-1994)

Ref Expression
Assertion suceloni A On suc A On

Proof

Step Hyp Ref Expression
1 onelss A On x A x A
2 velsn x A x = A
3 eqimss x = A x A
4 2 3 sylbi x A x A
5 4 a1i A On x A x A
6 1 5 orim12d A On x A x A x A x A
7 df-suc suc A = A A
8 7 eleq2i x suc A x A A
9 elun x A A x A x A
10 8 9 bitr2i x A x A x suc A
11 oridm x A x A x A
12 6 10 11 3imtr3g A On x suc A x A
13 sssucid A suc A
14 sstr2 x A A suc A x suc A
15 12 13 14 syl6mpi A On x suc A x suc A
16 15 ralrimiv A On x suc A x suc A
17 dftr3 Tr suc A x suc A x suc A
18 16 17 sylibr A On Tr suc A
19 onss A On A On
20 snssi A On A On
21 19 20 unssd A On A A On
22 7 21 eqsstrid A On suc A On
23 ordon Ord On
24 trssord Tr suc A suc A On Ord On Ord suc A
25 24 3exp Tr suc A suc A On Ord On Ord suc A
26 23 25 mpii Tr suc A suc A On Ord suc A
27 18 22 26 sylc A On Ord suc A
28 sucexg A On suc A V
29 elong suc A V suc A On Ord suc A
30 28 29 syl A On suc A On Ord suc A
31 27 30 mpbird A On suc A On