Metamath Proof Explorer


Theorem suceq

Description: Equality of successors. (Contributed by NM, 30-Aug-1993) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion suceq A=BsucA=sucB

Proof

Step Hyp Ref Expression
1 id A=BA=B
2 sneq A=BA=B
3 1 2 uneq12d A=BAA=BB
4 df-suc sucA=AA
5 df-suc sucB=BB
6 3 4 5 3eqtr4g A=BsucA=sucB