Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinals (continued)
sucexb
Next ⟩
sucexg
Metamath Proof Explorer
Ascii
Unicode
Theorem
sucexb
Description:
A successor exists iff its class argument exists.
(Contributed by
NM
, 22-Jun-1998)
Ref
Expression
Assertion
sucexb
⊢
A
∈
V
↔
suc
⁡
A
∈
V
Proof
Step
Hyp
Ref
Expression
1
unexb
⊢
A
∈
V
∧
A
∈
V
↔
A
∪
A
∈
V
2
snex
⊢
A
∈
V
3
2
biantru
⊢
A
∈
V
↔
A
∈
V
∧
A
∈
V
4
df-suc
⊢
suc
⁡
A
=
A
∪
A
5
4
eleq1i
⊢
suc
⁡
A
∈
V
↔
A
∪
A
∈
V
6
1
3
5
3bitr4i
⊢
A
∈
V
↔
suc
⁡
A
∈
V