Metamath Proof Explorer


Theorem sucexb

Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998)

Ref Expression
Assertion sucexb A V suc A V

Proof

Step Hyp Ref Expression
1 unexb A V A V A A V
2 snex A V
3 2 biantru A V A V A V
4 df-suc suc A = A A
5 4 eleq1i suc A V A A V
6 1 3 5 3bitr4i A V suc A V