Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
sucprc
Next ⟩
unisuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
sucprc
Description:
A proper class is its own successor.
(Contributed by
NM
, 3-Apr-1995)
Ref
Expression
Assertion
sucprc
⊢
¬
A
∈
V
→
suc
⁡
A
=
A
Proof
Step
Hyp
Ref
Expression
1
snprc
⊢
¬
A
∈
V
↔
A
=
∅
2
1
biimpi
⊢
¬
A
∈
V
→
A
=
∅
3
2
uneq2d
⊢
¬
A
∈
V
→
A
∪
A
=
A
∪
∅
4
df-suc
⊢
suc
⁡
A
=
A
∪
A
5
un0
⊢
A
∪
∅
=
A
6
5
eqcomi
⊢
A
=
A
∪
∅
7
3
4
6
3eqtr4g
⊢
¬
A
∈
V
→
suc
⁡
A
=
A