Metamath Proof Explorer


Theorem sucprc

Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995)

Ref Expression
Assertion sucprc ¬ A V suc A = A

Proof

Step Hyp Ref Expression
1 snprc ¬ A V A =
2 1 biimpi ¬ A V A =
3 2 uneq2d ¬ A V A A = A
4 df-suc suc A = A A
5 un0 A = A
6 5 eqcomi A = A
7 3 4 6 3eqtr4g ¬ A V suc A = A