Step |
Hyp |
Ref |
Expression |
1 |
|
sum2dchr.g |
|
2 |
|
sum2dchr.d |
|
3 |
|
sum2dchr.z |
|
4 |
|
sum2dchr.b |
|
5 |
|
sum2dchr.u |
|
6 |
|
sum2dchr.n |
|
7 |
|
sum2dchr.a |
|
8 |
|
sum2dchr.c |
|
9 |
|
eqid |
|
10 |
6
|
nnnn0d |
|
11 |
3
|
zncrng |
|
12 |
|
crngring |
|
13 |
10 11 12
|
3syl |
|
14 |
|
eqid |
|
15 |
4 5 14
|
dvrcl |
|
16 |
13 7 8 15
|
syl3anc |
|
17 |
1 2 3 9 4 6 16
|
sumdchr |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
4 18 5 19 14
|
dvrval |
|
21 |
7 8 20
|
syl2anc |
|
22 |
21
|
adantr |
|
23 |
22
|
fveq2d |
|
24 |
1 3 2
|
dchrmhm |
|
25 |
|
simpr |
|
26 |
24 25
|
sselid |
|
27 |
7
|
adantr |
|
28 |
4 5
|
unitss |
|
29 |
5 19
|
unitinvcl |
|
30 |
13 8 29
|
syl2anc |
|
31 |
30
|
adantr |
|
32 |
28 31
|
sselid |
|
33 |
|
eqid |
|
34 |
33 4
|
mgpbas |
|
35 |
33 18
|
mgpplusg |
|
36 |
|
eqid |
|
37 |
|
cnfldmul |
|
38 |
36 37
|
mgpplusg |
|
39 |
34 35 38
|
mhmlin |
|
40 |
26 27 32 39
|
syl3anc |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
1 3 2 5 41 42 25
|
dchrghm |
|
44 |
8
|
adantr |
|
45 |
5 41
|
unitgrpbas |
|
46 |
5 41 19
|
invrfval |
|
47 |
|
cnfldbas |
|
48 |
|
cnfld0 |
|
49 |
|
cndrng |
|
50 |
47 48 49
|
drngui |
|
51 |
|
eqid |
|
52 |
50 42 51
|
invrfval |
|
53 |
45 46 52
|
ghminv |
|
54 |
43 44 53
|
syl2anc |
|
55 |
31
|
fvresd |
|
56 |
44
|
fvresd |
|
57 |
56
|
fveq2d |
|
58 |
1 3 2 4 25
|
dchrf |
|
59 |
28 44
|
sselid |
|
60 |
58 59
|
ffvelrnd |
|
61 |
1 3 2 4 5 25 59
|
dchrn0 |
|
62 |
44 61
|
mpbird |
|
63 |
|
cnfldinv |
|
64 |
60 62 63
|
syl2anc |
|
65 |
|
recval |
|
66 |
60 62 65
|
syl2anc |
|
67 |
1 2 25 3 5 44
|
dchrabs |
|
68 |
67
|
oveq1d |
|
69 |
|
sq1 |
|
70 |
68 69
|
eqtrdi |
|
71 |
70
|
oveq2d |
|
72 |
60
|
cjcld |
|
73 |
72
|
div1d |
|
74 |
66 71 73
|
3eqtrd |
|
75 |
57 64 74
|
3eqtrd |
|
76 |
54 55 75
|
3eqtr3d |
|
77 |
76
|
oveq2d |
|
78 |
23 40 77
|
3eqtrd |
|
79 |
78
|
sumeq2dv |
|
80 |
4 5 14 9
|
dvreq1 |
|
81 |
13 7 8 80
|
syl3anc |
|
82 |
81
|
ifbid |
|
83 |
17 79 82
|
3eqtr3d |
|