Metamath Proof Explorer


Theorem sum2id

Description: The second class argument to a sum can be chosen so that it is always a set. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Assertion sum2id k A B = k A I B

Proof

Step Hyp Ref Expression
1 sumeq2ii k A I B = I I B k A B = k A I B
2 fvex I B V
3 fvi I B V I I B = I B
4 2 3 ax-mp I I B = I B
5 4 eqcomi I B = I I B
6 5 a1i k A I B = I I B
7 1 6 mprg k A B = k A I B