Metamath Proof Explorer


Theorem sumdchr

Description: An orthogonality relation for Dirichlet characters: the sum of x ( A ) for fixed A and all x is 0 if A = 1 and phi ( n ) otherwise. Theorem 6.5.1 of Shapiro p. 230. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses sumdchr.g G = DChr N
sumdchr.d D = Base G
sumdchr.z Z = /N
sumdchr.1 1 ˙ = 1 Z
sumdchr.b B = Base Z
sumdchr.n φ N
sumdchr.a φ A B
Assertion sumdchr φ x D x A = if A = 1 ˙ ϕ N 0

Proof

Step Hyp Ref Expression
1 sumdchr.g G = DChr N
2 sumdchr.d D = Base G
3 sumdchr.z Z = /N
4 sumdchr.1 1 ˙ = 1 Z
5 sumdchr.b B = Base Z
6 sumdchr.n φ N
7 sumdchr.a φ A B
8 1 2 3 4 5 6 7 sumdchr2 φ x D x A = if A = 1 ˙ D 0
9 1 2 dchrhash N D = ϕ N
10 6 9 syl φ D = ϕ N
11 10 ifeq1d φ if A = 1 ˙ D 0 = if A = 1 ˙ ϕ N 0
12 8 11 eqtrd φ x D x A = if A = 1 ˙ ϕ N 0