| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumdchr.g |
|
| 2 |
|
sumdchr.d |
|
| 3 |
|
sumdchr2.z |
|
| 4 |
|
sumdchr2.1 |
|
| 5 |
|
sumdchr2.b |
|
| 6 |
|
sumdchr2.n |
|
| 7 |
|
sumdchr2.x |
|
| 8 |
|
eqeq2 |
|
| 9 |
|
eqeq2 |
|
| 10 |
|
fveq2 |
|
| 11 |
1 3 2
|
dchrmhm |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
sselid |
|
| 14 |
|
eqid |
|
| 15 |
14 4
|
ringidval |
|
| 16 |
|
eqid |
|
| 17 |
|
cnfld1 |
|
| 18 |
16 17
|
ringidval |
|
| 19 |
15 18
|
mhm0 |
|
| 20 |
13 19
|
syl |
|
| 21 |
10 20
|
sylan9eqr |
|
| 22 |
21
|
an32s |
|
| 23 |
22
|
sumeq2dv |
|
| 24 |
1 2
|
dchrfi |
|
| 25 |
6 24
|
syl |
|
| 26 |
|
ax-1cn |
|
| 27 |
|
fsumconst |
|
| 28 |
25 26 27
|
sylancl |
|
| 29 |
|
hashcl |
|
| 30 |
6 24 29
|
3syl |
|
| 31 |
30
|
nn0cnd |
|
| 32 |
31
|
mulridd |
|
| 33 |
28 32
|
eqtrd |
|
| 34 |
33
|
adantr |
|
| 35 |
23 34
|
eqtrd |
|
| 36 |
|
df-ne |
|
| 37 |
6
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
7
|
adantr |
|
| 40 |
1 3 2 5 4 37 38 39
|
dchrpt |
|
| 41 |
37
|
adantr |
|
| 42 |
41 24
|
syl |
|
| 43 |
|
simpr |
|
| 44 |
1 3 2 5 43
|
dchrf |
|
| 45 |
39
|
adantr |
|
| 46 |
45
|
adantr |
|
| 47 |
44 46
|
ffvelcdmd |
|
| 48 |
42 47
|
fsumcl |
|
| 49 |
|
0cnd |
|
| 50 |
|
simprl |
|
| 51 |
1 3 2 5 50
|
dchrf |
|
| 52 |
51 45
|
ffvelcdmd |
|
| 53 |
|
subcl |
|
| 54 |
52 26 53
|
sylancl |
|
| 55 |
|
simprr |
|
| 56 |
|
subeq0 |
|
| 57 |
52 26 56
|
sylancl |
|
| 58 |
57
|
necon3bid |
|
| 59 |
55 58
|
mpbird |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
fveq1d |
|
| 62 |
61
|
cbvsumv |
|
| 63 |
|
eqid |
|
| 64 |
50
|
adantr |
|
| 65 |
1 3 2 63 64 43
|
dchrmul |
|
| 66 |
65
|
fveq1d |
|
| 67 |
51
|
adantr |
|
| 68 |
67
|
ffnd |
|
| 69 |
44
|
ffnd |
|
| 70 |
5
|
fvexi |
|
| 71 |
70
|
a1i |
|
| 72 |
|
fnfvof |
|
| 73 |
68 69 71 46 72
|
syl22anc |
|
| 74 |
66 73
|
eqtrd |
|
| 75 |
74
|
sumeq2dv |
|
| 76 |
62 75
|
eqtrid |
|
| 77 |
|
fveq1 |
|
| 78 |
1
|
dchrabl |
|
| 79 |
|
ablgrp |
|
| 80 |
41 78 79
|
3syl |
|
| 81 |
|
eqid |
|
| 82 |
81 2 63
|
grplactf1o |
|
| 83 |
80 50 82
|
syl2anc |
|
| 84 |
81 2
|
grplactval |
|
| 85 |
50 84
|
sylan |
|
| 86 |
77 42 83 85 47
|
fsumf1o |
|
| 87 |
42 52 47
|
fsummulc2 |
|
| 88 |
76 86 87
|
3eqtr4rd |
|
| 89 |
48
|
mullidd |
|
| 90 |
88 89
|
oveq12d |
|
| 91 |
48
|
subidd |
|
| 92 |
90 91
|
eqtrd |
|
| 93 |
26
|
a1i |
|
| 94 |
52 93 48
|
subdird |
|
| 95 |
54
|
mul01d |
|
| 96 |
92 94 95
|
3eqtr4d |
|
| 97 |
48 49 54 59 96
|
mulcanad |
|
| 98 |
40 97
|
rexlimddv |
|
| 99 |
36 98
|
sylan2br |
|
| 100 |
8 9 35 99
|
ifbothda |
|