| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
simpr |
|
| 3 |
|
simplll |
|
| 4 |
|
nfcv |
|
| 5 |
|
nfcsb1v |
|
| 6 |
4 5
|
nffv |
|
| 7 |
|
nfcsb1v |
|
| 8 |
4 7
|
nffv |
|
| 9 |
6 8
|
nfeq |
|
| 10 |
|
csbeq1a |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
csbeq1a |
|
| 13 |
12
|
fveq2d |
|
| 14 |
11 13
|
eqeq12d |
|
| 15 |
9 14
|
rspc |
|
| 16 |
2 3 15
|
sylc |
|
| 17 |
16
|
ifeq1da |
|
| 18 |
|
fvif |
|
| 19 |
|
fvif |
|
| 20 |
17 18 19
|
3eqtr4g |
|
| 21 |
20
|
mpteq2dv |
|
| 22 |
21
|
fveq1d |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
23 24
|
fvmptex |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
26 27
|
fvmptex |
|
| 29 |
22 25 28
|
3eqtr4g |
|
| 30 |
1 29
|
seqfeq |
|
| 31 |
30
|
breq1d |
|
| 32 |
31
|
anbi2d |
|
| 33 |
32
|
rexbidva |
|
| 34 |
|
simplr |
|
| 35 |
|
nnuz |
|
| 36 |
34 35
|
eleqtrdi |
|
| 37 |
|
f1of |
|
| 38 |
37
|
ad2antlr |
|
| 39 |
|
ffvelcdm |
|
| 40 |
38 39
|
sylancom |
|
| 41 |
|
simplll |
|
| 42 |
|
nfcsb1v |
|
| 43 |
|
nfcsb1v |
|
| 44 |
42 43
|
nfeq |
|
| 45 |
|
csbeq1a |
|
| 46 |
|
csbeq1a |
|
| 47 |
45 46
|
eqeq12d |
|
| 48 |
44 47
|
rspc |
|
| 49 |
40 41 48
|
sylc |
|
| 50 |
|
fvex |
|
| 51 |
|
csbfv2g |
|
| 52 |
50 51
|
ax-mp |
|
| 53 |
|
csbfv2g |
|
| 54 |
50 53
|
ax-mp |
|
| 55 |
49 52 54
|
3eqtr3g |
|
| 56 |
|
elfznn |
|
| 57 |
56
|
adantl |
|
| 58 |
|
fveq2 |
|
| 59 |
58
|
csbeq1d |
|
| 60 |
|
eqid |
|
| 61 |
59 60
|
fvmpti |
|
| 62 |
57 61
|
syl |
|
| 63 |
58
|
csbeq1d |
|
| 64 |
|
eqid |
|
| 65 |
63 64
|
fvmpti |
|
| 66 |
57 65
|
syl |
|
| 67 |
55 62 66
|
3eqtr4d |
|
| 68 |
36 67
|
seqfveq |
|
| 69 |
68
|
eqeq2d |
|
| 70 |
69
|
pm5.32da |
|
| 71 |
70
|
exbidv |
|
| 72 |
71
|
rexbidva |
|
| 73 |
33 72
|
orbi12d |
|
| 74 |
73
|
iotabidv |
|
| 75 |
|
df-sum |
|
| 76 |
|
df-sum |
|
| 77 |
74 75 76
|
3eqtr4g |
|