Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
simpr |
|
3 |
|
simplll |
|
4 |
|
nfcv |
|
5 |
|
nfcsb1v |
|
6 |
4 5
|
nffv |
|
7 |
|
nfcsb1v |
|
8 |
4 7
|
nffv |
|
9 |
6 8
|
nfeq |
|
10 |
|
csbeq1a |
|
11 |
10
|
fveq2d |
|
12 |
|
csbeq1a |
|
13 |
12
|
fveq2d |
|
14 |
11 13
|
eqeq12d |
|
15 |
9 14
|
rspc |
|
16 |
2 3 15
|
sylc |
|
17 |
16
|
ifeq1da |
|
18 |
|
fvif |
|
19 |
|
fvif |
|
20 |
17 18 19
|
3eqtr4g |
|
21 |
20
|
mpteq2dv |
|
22 |
21
|
fveq1d |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
23 24
|
fvmptex |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
26 27
|
fvmptex |
|
29 |
22 25 28
|
3eqtr4g |
|
30 |
1 29
|
seqfeq |
|
31 |
30
|
breq1d |
|
32 |
31
|
anbi2d |
|
33 |
32
|
rexbidva |
|
34 |
|
simplr |
|
35 |
|
nnuz |
|
36 |
34 35
|
eleqtrdi |
|
37 |
|
f1of |
|
38 |
37
|
ad2antlr |
|
39 |
|
ffvelrn |
|
40 |
38 39
|
sylancom |
|
41 |
|
simplll |
|
42 |
|
nfcsb1v |
|
43 |
|
nfcsb1v |
|
44 |
42 43
|
nfeq |
|
45 |
|
csbeq1a |
|
46 |
|
csbeq1a |
|
47 |
45 46
|
eqeq12d |
|
48 |
44 47
|
rspc |
|
49 |
40 41 48
|
sylc |
|
50 |
|
fvex |
|
51 |
|
csbfv2g |
|
52 |
50 51
|
ax-mp |
|
53 |
|
csbfv2g |
|
54 |
50 53
|
ax-mp |
|
55 |
49 52 54
|
3eqtr3g |
|
56 |
|
elfznn |
|
57 |
56
|
adantl |
|
58 |
|
fveq2 |
|
59 |
58
|
csbeq1d |
|
60 |
|
eqid |
|
61 |
59 60
|
fvmpti |
|
62 |
57 61
|
syl |
|
63 |
58
|
csbeq1d |
|
64 |
|
eqid |
|
65 |
63 64
|
fvmpti |
|
66 |
57 65
|
syl |
|
67 |
55 62 66
|
3eqtr4d |
|
68 |
36 67
|
seqfveq |
|
69 |
68
|
eqeq2d |
|
70 |
69
|
pm5.32da |
|
71 |
70
|
exbidv |
|
72 |
71
|
rexbidva |
|
73 |
33 72
|
orbi12d |
|
74 |
73
|
iotabidv |
|
75 |
|
df-sum |
|
76 |
|
df-sum |
|
77 |
74 75 76
|
3eqtr4g |
|