Step |
Hyp |
Ref |
Expression |
1 |
|
sumeven.a |
|
2 |
|
sumeven.b |
|
3 |
|
sumeven.e |
|
4 |
|
sumeq1 |
|
5 |
4
|
breq2d |
|
6 |
|
sumeq1 |
|
7 |
6
|
breq2d |
|
8 |
|
sumeq1 |
|
9 |
8
|
breq2d |
|
10 |
|
sumeq1 |
|
11 |
10
|
breq2d |
|
12 |
|
z0even |
|
13 |
|
sum0 |
|
14 |
12 13
|
breqtrri |
|
15 |
14
|
a1i |
|
16 |
|
2z |
|
17 |
16
|
a1i |
|
18 |
|
ssfi |
|
19 |
18
|
expcom |
|
20 |
19
|
adantr |
|
21 |
1 20
|
mpan9 |
|
22 |
|
simpll |
|
23 |
|
ssel |
|
24 |
23
|
adantr |
|
25 |
24
|
adantl |
|
26 |
25
|
imp |
|
27 |
22 26 2
|
syl2anc |
|
28 |
21 27
|
fsumzcl |
|
29 |
|
eldifi |
|
30 |
29
|
adantl |
|
31 |
30
|
adantl |
|
32 |
2
|
adantlr |
|
33 |
32
|
ralrimiva |
|
34 |
|
rspcsbela |
|
35 |
31 33 34
|
syl2anc |
|
36 |
17 28 35
|
3jca |
|
37 |
36
|
adantr |
|
38 |
3
|
ralrimiva |
|
39 |
|
nfcv |
|
40 |
|
nfcv |
|
41 |
|
nfcsb1v |
|
42 |
39 40 41
|
nfbr |
|
43 |
|
csbeq1a |
|
44 |
43
|
breq2d |
|
45 |
42 44
|
rspc |
|
46 |
29 38 45
|
syl2imc |
|
47 |
46
|
a1d |
|
48 |
47
|
imp32 |
|
49 |
48
|
anim1ci |
|
50 |
|
dvds2add |
|
51 |
37 49 50
|
sylc |
|
52 |
|
vex |
|
53 |
52
|
a1i |
|
54 |
|
eldif |
|
55 |
|
df-nel |
|
56 |
55
|
biimpri |
|
57 |
54 56
|
simplbiim |
|
58 |
57
|
adantl |
|
59 |
58
|
adantl |
|
60 |
|
simpll |
|
61 |
|
elun |
|
62 |
24
|
com12 |
|
63 |
|
elsni |
|
64 |
|
eleq1w |
|
65 |
30 64
|
syl5ibr |
|
66 |
63 65
|
syl |
|
67 |
62 66
|
jaoi |
|
68 |
67
|
com12 |
|
69 |
61 68
|
syl5bi |
|
70 |
69
|
adantl |
|
71 |
70
|
imp |
|
72 |
60 71 2
|
syl2anc |
|
73 |
72
|
ralrimiva |
|
74 |
|
fsumsplitsnun |
|
75 |
21 53 59 73 74
|
syl121anc |
|
76 |
75
|
adantr |
|
77 |
51 76
|
breqtrrd |
|
78 |
77
|
ex |
|
79 |
5 7 9 11 15 78 1
|
findcard2d |
|