Metamath Proof Explorer


Theorem sumex

Description: A sum is a set. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Assertion sumex k A B V

Proof

Step Hyp Ref Expression
1 df-sum k A B = ι x | m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m
2 iotaex ι x | m A m seq m + n if n A n / k B 0 x m f f : 1 m 1-1 onto A x = seq 1 + n f n / k B m V
3 1 2 eqeltri k A B V