Metamath Proof Explorer


Theorem sumfc

Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Assertion sumfc j A k A B j = k A B

Proof

Step Hyp Ref Expression
1 eqid k A B = k A B
2 1 fvmpt2i k A k A B k = I B
3 2 sumeq2i k A k A B k = k A I B
4 nffvmpt1 _ k k A B j
5 nfcv _ j k A B k
6 fveq2 j = k k A B j = k A B k
7 4 5 6 cbvsumi j A k A B j = k A k A B k
8 sum2id k A B = k A I B
9 3 7 8 3eqtr4i j A k A B j = k A B