Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
|
2 |
|
summo.2 |
|
3 |
|
summo.3 |
|
4 |
|
fveq2 |
|
5 |
4
|
sseq2d |
|
6 |
|
seqeq1 |
|
7 |
6
|
breq1d |
|
8 |
5 7
|
anbi12d |
|
9 |
8
|
cbvrexvw |
|
10 |
|
reeanv |
|
11 |
|
simprlr |
|
12 |
2
|
ad4ant14 |
|
13 |
|
simplrl |
|
14 |
|
simplrr |
|
15 |
|
simprll |
|
16 |
|
simprrl |
|
17 |
1 12 13 14 15 16
|
sumrb |
|
18 |
11 17
|
mpbid |
|
19 |
|
simprrr |
|
20 |
|
climuni |
|
21 |
18 19 20
|
syl2anc |
|
22 |
21
|
exp31 |
|
23 |
22
|
rexlimdvv |
|
24 |
10 23
|
syl5bir |
|
25 |
24
|
expdimp |
|
26 |
9 25
|
syl5bi |
|
27 |
1 2 3
|
summolem2 |
|
28 |
26 27
|
jaod |
|
29 |
1 2 3
|
summolem2 |
|
30 |
|
equcom |
|
31 |
29 30
|
syl6ib |
|
32 |
31
|
impancom |
|
33 |
|
oveq2 |
|
34 |
33
|
f1oeq2d |
|
35 |
|
fveq2 |
|
36 |
35
|
eqeq2d |
|
37 |
34 36
|
anbi12d |
|
38 |
37
|
exbidv |
|
39 |
|
f1oeq1 |
|
40 |
|
fveq1 |
|
41 |
40
|
csbeq1d |
|
42 |
41
|
mpteq2dv |
|
43 |
3 42
|
eqtrid |
|
44 |
43
|
seqeq3d |
|
45 |
44
|
fveq1d |
|
46 |
45
|
eqeq2d |
|
47 |
39 46
|
anbi12d |
|
48 |
47
|
cbvexvw |
|
49 |
38 48
|
bitrdi |
|
50 |
49
|
cbvrexvw |
|
51 |
|
reeanv |
|
52 |
|
exdistrv |
|
53 |
|
an4 |
|
54 |
2
|
ad4ant14 |
|
55 |
|
fveq2 |
|
56 |
55
|
csbeq1d |
|
57 |
56
|
cbvmptv |
|
58 |
3 57
|
eqtri |
|
59 |
|
fveq2 |
|
60 |
59
|
csbeq1d |
|
61 |
60
|
cbvmptv |
|
62 |
|
simplr |
|
63 |
|
simprl |
|
64 |
|
simprr |
|
65 |
1 54 58 61 62 63 64
|
summolem3 |
|
66 |
|
eqeq12 |
|
67 |
65 66
|
syl5ibrcom |
|
68 |
67
|
expimpd |
|
69 |
53 68
|
syl5bi |
|
70 |
69
|
exlimdvv |
|
71 |
52 70
|
syl5bir |
|
72 |
71
|
rexlimdvva |
|
73 |
51 72
|
syl5bir |
|
74 |
73
|
expdimp |
|
75 |
50 74
|
syl5bi |
|
76 |
32 75
|
jaod |
|
77 |
28 76
|
jaodan |
|
78 |
77
|
expimpd |
|
79 |
78
|
alrimivv |
|
80 |
|
breq2 |
|
81 |
80
|
anbi2d |
|
82 |
81
|
rexbidv |
|
83 |
|
eqeq1 |
|
84 |
83
|
anbi2d |
|
85 |
84
|
exbidv |
|
86 |
85
|
rexbidv |
|
87 |
82 86
|
orbi12d |
|
88 |
87
|
mo4 |
|
89 |
79 88
|
sylibr |
|