Metamath Proof Explorer


Theorem summo

Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses summo.1 F = k if k A B 0
summo.2 φ k A B
summo.3 G = n f n / k B
Assertion summo φ * x m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m

Proof

Step Hyp Ref Expression
1 summo.1 F = k if k A B 0
2 summo.2 φ k A B
3 summo.3 G = n f n / k B
4 fveq2 m = n m = n
5 4 sseq2d m = n A m A n
6 seqeq1 m = n seq m + F = seq n + F
7 6 breq1d m = n seq m + F y seq n + F y
8 5 7 anbi12d m = n A m seq m + F y A n seq n + F y
9 8 cbvrexvw m A m seq m + F y n A n seq n + F y
10 reeanv m n A m seq m + F x A n seq n + F y m A m seq m + F x n A n seq n + F y
11 simprlr φ m n A m seq m + F x A n seq n + F y seq m + F x
12 2 ad4ant14 φ m n A m seq m + F x A n seq n + F y k A B
13 simplrl φ m n A m seq m + F x A n seq n + F y m
14 simplrr φ m n A m seq m + F x A n seq n + F y n
15 simprll φ m n A m seq m + F x A n seq n + F y A m
16 simprrl φ m n A m seq m + F x A n seq n + F y A n
17 1 12 13 14 15 16 sumrb φ m n A m seq m + F x A n seq n + F y seq m + F x seq n + F x
18 11 17 mpbid φ m n A m seq m + F x A n seq n + F y seq n + F x
19 simprrr φ m n A m seq m + F x A n seq n + F y seq n + F y
20 climuni seq n + F x seq n + F y x = y
21 18 19 20 syl2anc φ m n A m seq m + F x A n seq n + F y x = y
22 21 exp31 φ m n A m seq m + F x A n seq n + F y x = y
23 22 rexlimdvv φ m n A m seq m + F x A n seq n + F y x = y
24 10 23 syl5bir φ m A m seq m + F x n A n seq n + F y x = y
25 24 expdimp φ m A m seq m + F x n A n seq n + F y x = y
26 9 25 syl5bi φ m A m seq m + F x m A m seq m + F y x = y
27 1 2 3 summolem2 φ m A m seq m + F x m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
28 26 27 jaod φ m A m seq m + F x m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
29 1 2 3 summolem2 φ m A m seq m + F y m f f : 1 m 1-1 onto A x = seq 1 + G m y = x
30 equcom y = x x = y
31 29 30 syl6ib φ m A m seq m + F y m f f : 1 m 1-1 onto A x = seq 1 + G m x = y
32 31 impancom φ m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y x = y
33 oveq2 m = n 1 m = 1 n
34 33 f1oeq2d m = n f : 1 m 1-1 onto A f : 1 n 1-1 onto A
35 fveq2 m = n seq 1 + G m = seq 1 + G n
36 35 eqeq2d m = n y = seq 1 + G m y = seq 1 + G n
37 34 36 anbi12d m = n f : 1 m 1-1 onto A y = seq 1 + G m f : 1 n 1-1 onto A y = seq 1 + G n
38 37 exbidv m = n f f : 1 m 1-1 onto A y = seq 1 + G m f f : 1 n 1-1 onto A y = seq 1 + G n
39 f1oeq1 f = g f : 1 n 1-1 onto A g : 1 n 1-1 onto A
40 fveq1 f = g f n = g n
41 40 csbeq1d f = g f n / k B = g n / k B
42 41 mpteq2dv f = g n f n / k B = n g n / k B
43 3 42 eqtrid f = g G = n g n / k B
44 43 seqeq3d f = g seq 1 + G = seq 1 + n g n / k B
45 44 fveq1d f = g seq 1 + G n = seq 1 + n g n / k B n
46 45 eqeq2d f = g y = seq 1 + G n y = seq 1 + n g n / k B n
47 39 46 anbi12d f = g f : 1 n 1-1 onto A y = seq 1 + G n g : 1 n 1-1 onto A y = seq 1 + n g n / k B n
48 47 cbvexvw f f : 1 n 1-1 onto A y = seq 1 + G n g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n
49 38 48 bitrdi m = n f f : 1 m 1-1 onto A y = seq 1 + G m g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n
50 49 cbvrexvw m f f : 1 m 1-1 onto A y = seq 1 + G m n g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n
51 reeanv m n f f : 1 m 1-1 onto A x = seq 1 + G m g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n m f f : 1 m 1-1 onto A x = seq 1 + G m n g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n
52 exdistrv f g f : 1 m 1-1 onto A x = seq 1 + G m g : 1 n 1-1 onto A y = seq 1 + n g n / k B n f f : 1 m 1-1 onto A x = seq 1 + G m g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n
53 an4 f : 1 m 1-1 onto A x = seq 1 + G m g : 1 n 1-1 onto A y = seq 1 + n g n / k B n f : 1 m 1-1 onto A g : 1 n 1-1 onto A x = seq 1 + G m y = seq 1 + n g n / k B n
54 2 ad4ant14 φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A k A B
55 fveq2 n = j f n = f j
56 55 csbeq1d n = j f n / k B = f j / k B
57 56 cbvmptv n f n / k B = j f j / k B
58 3 57 eqtri G = j f j / k B
59 fveq2 n = j g n = g j
60 59 csbeq1d n = j g n / k B = g j / k B
61 60 cbvmptv n g n / k B = j g j / k B
62 simplr φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A m n
63 simprl φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A f : 1 m 1-1 onto A
64 simprr φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A g : 1 n 1-1 onto A
65 1 54 58 61 62 63 64 summolem3 φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A seq 1 + G m = seq 1 + n g n / k B n
66 eqeq12 x = seq 1 + G m y = seq 1 + n g n / k B n x = y seq 1 + G m = seq 1 + n g n / k B n
67 65 66 syl5ibrcom φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A x = seq 1 + G m y = seq 1 + n g n / k B n x = y
68 67 expimpd φ m n f : 1 m 1-1 onto A g : 1 n 1-1 onto A x = seq 1 + G m y = seq 1 + n g n / k B n x = y
69 53 68 syl5bi φ m n f : 1 m 1-1 onto A x = seq 1 + G m g : 1 n 1-1 onto A y = seq 1 + n g n / k B n x = y
70 69 exlimdvv φ m n f g f : 1 m 1-1 onto A x = seq 1 + G m g : 1 n 1-1 onto A y = seq 1 + n g n / k B n x = y
71 52 70 syl5bir φ m n f f : 1 m 1-1 onto A x = seq 1 + G m g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n x = y
72 71 rexlimdvva φ m n f f : 1 m 1-1 onto A x = seq 1 + G m g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n x = y
73 51 72 syl5bir φ m f f : 1 m 1-1 onto A x = seq 1 + G m n g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n x = y
74 73 expdimp φ m f f : 1 m 1-1 onto A x = seq 1 + G m n g g : 1 n 1-1 onto A y = seq 1 + n g n / k B n x = y
75 50 74 syl5bi φ m f f : 1 m 1-1 onto A x = seq 1 + G m m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
76 32 75 jaod φ m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
77 28 76 jaodan φ m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
78 77 expimpd φ m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
79 78 alrimivv φ x y m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
80 breq2 x = y seq m + F x seq m + F y
81 80 anbi2d x = y A m seq m + F x A m seq m + F y
82 81 rexbidv x = y m A m seq m + F x m A m seq m + F y
83 eqeq1 x = y x = seq 1 + G m y = seq 1 + G m
84 83 anbi2d x = y f : 1 m 1-1 onto A x = seq 1 + G m f : 1 m 1-1 onto A y = seq 1 + G m
85 84 exbidv x = y f f : 1 m 1-1 onto A x = seq 1 + G m f f : 1 m 1-1 onto A y = seq 1 + G m
86 85 rexbidv x = y m f f : 1 m 1-1 onto A x = seq 1 + G m m f f : 1 m 1-1 onto A y = seq 1 + G m
87 82 86 orbi12d x = y m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m
88 87 mo4 * x m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m x y m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m m A m seq m + F y m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
89 79 88 sylibr φ * x m A m seq m + F x m f f : 1 m 1-1 onto A x = seq 1 + G m