Metamath Proof Explorer


Theorem summolem2

Description: Lemma for summo . (Contributed by Mario Carneiro, 3-Apr-2014)

Ref Expression
Hypotheses summo.1 F = k if k A B 0
summo.2 φ k A B
summo.3 G = n f n / k B
Assertion summolem2 φ m A m seq m + F x m f f : 1 m 1-1 onto A y = seq 1 + G m x = y

Proof

Step Hyp Ref Expression
1 summo.1 F = k if k A B 0
2 summo.2 φ k A B
3 summo.3 G = n f n / k B
4 fveq2 m = j m = j
5 4 sseq2d m = j A m A j
6 seqeq1 m = j seq m + F = seq j + F
7 6 breq1d m = j seq m + F x seq j + F x
8 5 7 anbi12d m = j A m seq m + F x A j seq j + F x
9 8 cbvrexvw m A m seq m + F x j A j seq j + F x
10 simplrr φ j A j seq j + F x m f : 1 m 1-1 onto A seq j + F x
11 simplrl φ j A j seq j + F x m f : 1 m 1-1 onto A A j
12 uzssz j
13 zssre
14 12 13 sstri j
15 11 14 sstrdi φ j A j seq j + F x m f : 1 m 1-1 onto A A
16 ltso < Or
17 soss A < Or < Or A
18 15 16 17 mpisyl φ j A j seq j + F x m f : 1 m 1-1 onto A < Or A
19 fzfi 1 m Fin
20 ovex 1 m V
21 20 f1oen f : 1 m 1-1 onto A 1 m A
22 21 ad2antll φ j A j seq j + F x m f : 1 m 1-1 onto A 1 m A
23 22 ensymd φ j A j seq j + F x m f : 1 m 1-1 onto A A 1 m
24 enfii 1 m Fin A 1 m A Fin
25 19 23 24 sylancr φ j A j seq j + F x m f : 1 m 1-1 onto A A Fin
26 fz1iso < Or A A Fin g g Isom < , < 1 A A
27 18 25 26 syl2anc φ j A j seq j + F x m f : 1 m 1-1 onto A g g Isom < , < 1 A A
28 2 ad5ant15 φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A k A B
29 eqid n g n / k B = n g n / k B
30 simprll φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A m
31 simpllr φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A j
32 simplrl φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A A j
33 simprlr φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A f : 1 m 1-1 onto A
34 simprr φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A g Isom < , < 1 A A
35 1 28 3 29 30 31 32 33 34 summolem2a φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A seq j + F seq 1 + G m
36 35 expr φ j A j seq j + F x m f : 1 m 1-1 onto A g Isom < , < 1 A A seq j + F seq 1 + G m
37 36 exlimdv φ j A j seq j + F x m f : 1 m 1-1 onto A g g Isom < , < 1 A A seq j + F seq 1 + G m
38 27 37 mpd φ j A j seq j + F x m f : 1 m 1-1 onto A seq j + F seq 1 + G m
39 climuni seq j + F x seq j + F seq 1 + G m x = seq 1 + G m
40 10 38 39 syl2anc φ j A j seq j + F x m f : 1 m 1-1 onto A x = seq 1 + G m
41 40 anassrs φ j A j seq j + F x m f : 1 m 1-1 onto A x = seq 1 + G m
42 eqeq2 y = seq 1 + G m x = y x = seq 1 + G m
43 41 42 syl5ibrcom φ j A j seq j + F x m f : 1 m 1-1 onto A y = seq 1 + G m x = y
44 43 expimpd φ j A j seq j + F x m f : 1 m 1-1 onto A y = seq 1 + G m x = y
45 44 exlimdv φ j A j seq j + F x m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
46 45 rexlimdva φ j A j seq j + F x m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
47 46 r19.29an φ j A j seq j + F x m f f : 1 m 1-1 onto A y = seq 1 + G m x = y
48 9 47 sylan2b φ m A m seq m + F x m f f : 1 m 1-1 onto A y = seq 1 + G m x = y