Metamath Proof Explorer


Theorem sumnnodd

Description: A series indexed by NN with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses sumnnodd.1 φ F :
sumnnodd.even0 φ k k 2 F k = 0
sumnnodd.sc φ seq 1 + F B
Assertion sumnnodd φ seq 1 + k F 2 k 1 B k F k = k F 2 k 1

Proof

Step Hyp Ref Expression
1 sumnnodd.1 φ F :
2 sumnnodd.even0 φ k k 2 F k = 0
3 sumnnodd.sc φ seq 1 + F B
4 nfv k φ
5 nfcv _ k seq 1 + F
6 nfcv _ k 1
7 nfcv _ k +
8 nfmpt1 _ k k F 2 k 1
9 6 7 8 nfseq _ k seq 1 + k F 2 k 1
10 nfmpt1 _ k k 2 k 1
11 nnuz = 1
12 1zzd φ 1
13 seqex seq 1 + F V
14 13 a1i φ seq 1 + F V
15 1 ffvelrnda φ k F k
16 11 12 15 serf φ seq 1 + F :
17 16 ffvelrnda φ k seq 1 + F k
18 1nn 1
19 oveq2 k = 1 2 k = 2 1
20 19 oveq1d k = 1 2 k 1 = 2 1 1
21 eqid k 2 k 1 = k 2 k 1
22 ovex 2 1 1 V
23 20 21 22 fvmpt 1 k 2 k 1 1 = 2 1 1
24 18 23 ax-mp k 2 k 1 1 = 2 1 1
25 2t1e2 2 1 = 2
26 25 oveq1i 2 1 1 = 2 1
27 2m1e1 2 1 = 1
28 24 26 27 3eqtri k 2 k 1 1 = 1
29 28 18 eqeltri k 2 k 1 1
30 29 a1i φ k 2 k 1 1
31 2z 2
32 31 a1i k 2
33 nnz k k
34 32 33 zmulcld k 2 k
35 33 peano2zd k k + 1
36 32 35 zmulcld k 2 k + 1
37 1zzd k 1
38 36 37 zsubcld k 2 k + 1 1
39 2re 2
40 39 a1i k 2
41 nnre k k
42 40 41 remulcld k 2 k
43 42 lep1d k 2 k 2 k + 1
44 2cnd k 2
45 nncn k k
46 1cnd k 1
47 44 45 46 adddid k 2 k + 1 = 2 k + 2 1
48 25 oveq2i 2 k + 2 1 = 2 k + 2
49 47 48 eqtrdi k 2 k + 1 = 2 k + 2
50 49 oveq1d k 2 k + 1 1 = 2 k + 2 - 1
51 44 45 mulcld k 2 k
52 51 44 46 addsubassd k 2 k + 2 - 1 = 2 k + 2 - 1
53 27 oveq2i 2 k + 2 - 1 = 2 k + 1
54 53 a1i k 2 k + 2 - 1 = 2 k + 1
55 50 52 54 3eqtrrd k 2 k + 1 = 2 k + 1 1
56 43 55 breqtrd k 2 k 2 k + 1 1
57 eluz2 2 k + 1 1 2 k 2 k 2 k + 1 1 2 k 2 k + 1 1
58 34 38 56 57 syl3anbrc k 2 k + 1 1 2 k
59 oveq2 k = j 2 k = 2 j
60 59 oveq1d k = j 2 k 1 = 2 j 1
61 60 cbvmptv k 2 k 1 = j 2 j 1
62 oveq2 j = k + 1 2 j = 2 k + 1
63 62 oveq1d j = k + 1 2 j 1 = 2 k + 1 1
64 peano2nn k k + 1
65 61 63 64 38 fvmptd3 k k 2 k 1 k + 1 = 2 k + 1 1
66 34 37 zsubcld k 2 k 1
67 21 fvmpt2 k 2 k 1 k 2 k 1 k = 2 k 1
68 66 67 mpdan k k 2 k 1 k = 2 k 1
69 68 oveq1d k k 2 k 1 k + 1 = 2 k - 1 + 1
70 51 46 npcand k 2 k - 1 + 1 = 2 k
71 69 70 eqtrd k k 2 k 1 k + 1 = 2 k
72 71 fveq2d k k 2 k 1 k + 1 = 2 k
73 58 65 72 3eltr4d k k 2 k 1 k + 1 k 2 k 1 k + 1
74 73 adantl φ k k 2 k 1 k + 1 k 2 k 1 k + 1
75 seqex seq 1 + k F 2 k 1 V
76 75 a1i φ seq 1 + k F 2 k 1 V
77 incom 1 2 k 1 n | n 2 1 2 k 1 n | n 2 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
78 inss2 1 2 k 1 n | n 2 n | n 2
79 ssrin 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2
80 78 79 ax-mp 1 2 k 1 n | n 2 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2
81 77 80 eqsstri 1 2 k 1 n | n 2 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2
82 disjdif n | n 2 1 2 k 1 n | n 2 =
83 81 82 sseqtri 1 2 k 1 n | n 2 1 2 k 1 n | n 2
84 ss0 1 2 k 1 n | n 2 1 2 k 1 n | n 2 1 2 k 1 n | n 2 1 2 k 1 n | n 2 =
85 83 84 mp1i φ k 1 2 k 1 n | n 2 1 2 k 1 n | n 2 =
86 uncom 1 2 k 1 n | n 2 1 2 k 1 n | n 2 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
87 inundif 1 2 k 1 n | n 2 1 2 k 1 n | n 2 = 1 2 k 1
88 86 87 eqtr2i 1 2 k 1 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
89 88 a1i φ k 1 2 k 1 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
90 fzfid φ k 1 2 k 1 Fin
91 1 adantr φ j 1 2 k 1 F :
92 elfznn j 1 2 k 1 j
93 92 adantl φ j 1 2 k 1 j
94 91 93 ffvelrnd φ j 1 2 k 1 F j
95 94 adantlr φ k j 1 2 k 1 F j
96 85 89 90 95 fsumsplit φ k j = 1 2 k 1 F j = j 1 2 k 1 n | n 2 F j + j 1 2 k 1 n | n 2 F j
97 simpl φ j 1 2 k 1 n | n 2 φ
98 ssrab2 n | n 2
99 78 sseli j 1 2 k 1 n | n 2 j n | n 2
100 98 99 sselid j 1 2 k 1 n | n 2 j
101 100 adantl φ j 1 2 k 1 n | n 2 j
102 oveq1 k = j k 2 = j 2
103 102 eleq1d k = j k 2 j 2
104 oveq1 n = k n 2 = k 2
105 104 eleq1d n = k n 2 k 2
106 105 elrab k n | n 2 k k 2
107 106 simprbi k n | n 2 k 2
108 103 107 vtoclga j n | n 2 j 2
109 99 108 syl j 1 2 k 1 n | n 2 j 2
110 109 adantl φ j 1 2 k 1 n | n 2 j 2
111 eleq1w k = j k j
112 111 103 3anbi23d k = j φ k k 2 φ j j 2
113 fveqeq2 k = j F k = 0 F j = 0
114 112 113 imbi12d k = j φ k k 2 F k = 0 φ j j 2 F j = 0
115 114 2 chvarvv φ j j 2 F j = 0
116 97 101 110 115 syl3anc φ j 1 2 k 1 n | n 2 F j = 0
117 116 sumeq2dv φ j 1 2 k 1 n | n 2 F j = j 1 2 k 1 n | n 2 0
118 fzfid φ 1 2 k 1 Fin
119 inss1 1 2 k 1 n | n 2 1 2 k 1
120 119 a1i φ 1 2 k 1 n | n 2 1 2 k 1
121 ssfi 1 2 k 1 Fin 1 2 k 1 n | n 2 1 2 k 1 1 2 k 1 n | n 2 Fin
122 118 120 121 syl2anc φ 1 2 k 1 n | n 2 Fin
123 122 olcd φ 1 2 k 1 n | n 2 C 1 2 k 1 n | n 2 Fin
124 sumz 1 2 k 1 n | n 2 C 1 2 k 1 n | n 2 Fin j 1 2 k 1 n | n 2 0 = 0
125 123 124 syl φ j 1 2 k 1 n | n 2 0 = 0
126 117 125 eqtrd φ j 1 2 k 1 n | n 2 F j = 0
127 126 adantr φ k j 1 2 k 1 n | n 2 F j = 0
128 127 oveq2d φ k j 1 2 k 1 n | n 2 F j + j 1 2 k 1 n | n 2 F j = j 1 2 k 1 n | n 2 F j + 0
129 fzfi 1 2 k 1 Fin
130 difss 1 2 k 1 n | n 2 1 2 k 1
131 ssfi 1 2 k 1 Fin 1 2 k 1 n | n 2 1 2 k 1 1 2 k 1 n | n 2 Fin
132 129 130 131 mp2an 1 2 k 1 n | n 2 Fin
133 132 a1i φ k 1 2 k 1 n | n 2 Fin
134 130 sseli j 1 2 k 1 n | n 2 j 1 2 k 1
135 134 94 sylan2 φ j 1 2 k 1 n | n 2 F j
136 135 adantlr φ k j 1 2 k 1 n | n 2 F j
137 133 136 fsumcl φ k j 1 2 k 1 n | n 2 F j
138 137 addid1d φ k j 1 2 k 1 n | n 2 F j + 0 = j 1 2 k 1 n | n 2 F j
139 fveq2 j = i F j = F i
140 139 cbvsumv j 1 2 k 1 n | n 2 F j = i 1 2 k 1 n | n 2 F i
141 138 140 eqtrdi φ k j 1 2 k 1 n | n 2 F j + 0 = i 1 2 k 1 n | n 2 F i
142 128 141 eqtrd φ k j 1 2 k 1 n | n 2 F j + j 1 2 k 1 n | n 2 F j = i 1 2 k 1 n | n 2 F i
143 fveq2 i = 2 j 1 F i = F 2 j 1
144 fzfid φ k 1 k Fin
145 1zzd k i 1 k 1
146 66 adantr k i 1 k 2 k 1
147 31 a1i i 1 k 2
148 elfzelz i 1 k i
149 147 148 zmulcld i 1 k 2 i
150 1zzd i 1 k 1
151 149 150 zsubcld i 1 k 2 i 1
152 151 adantl k i 1 k 2 i 1
153 26 27 eqtr2i 1 = 2 1 1
154 1re 1
155 39 154 remulcli 2 1
156 155 a1i i 1 k 2 1
157 149 zred i 1 k 2 i
158 1red i 1 k 1
159 148 zred i 1 k i
160 39 a1i i 1 k 2
161 0le2 0 2
162 161 a1i i 1 k 0 2
163 elfzle1 i 1 k 1 i
164 158 159 160 162 163 lemul2ad i 1 k 2 1 2 i
165 156 157 158 164 lesub1dd i 1 k 2 1 1 2 i 1
166 153 165 eqbrtrid i 1 k 1 2 i 1
167 166 adantl k i 1 k 1 2 i 1
168 157 adantl k i 1 k 2 i
169 42 adantr k i 1 k 2 k
170 1red k i 1 k 1
171 159 adantl k i 1 k i
172 41 adantr k i 1 k k
173 39 a1i k i 1 k 2
174 161 a1i k i 1 k 0 2
175 elfzle2 i 1 k i k
176 175 adantl k i 1 k i k
177 171 172 173 174 176 lemul2ad k i 1 k 2 i 2 k
178 168 169 170 177 lesub1dd k i 1 k 2 i 1 2 k 1
179 145 146 152 167 178 elfzd k i 1 k 2 i 1 1 2 k 1
180 149 zcnd i 1 k 2 i
181 1cnd i 1 k 1
182 2cnd i 1 k 2
183 2ne0 2 0
184 183 a1i i 1 k 2 0
185 180 181 182 184 divsubdird i 1 k 2 i 1 2 = 2 i 2 1 2
186 148 zcnd i 1 k i
187 186 182 184 divcan3d i 1 k 2 i 2 = i
188 187 oveq1d i 1 k 2 i 2 1 2 = i 1 2
189 185 188 eqtrd i 1 k 2 i 1 2 = i 1 2
190 148 150 zsubcld i 1 k i 1
191 160 184 rereccld i 1 k 1 2
192 halflt1 1 2 < 1
193 192 a1i i 1 k 1 2 < 1
194 191 158 159 193 ltsub2dd i 1 k i 1 < i 1 2
195 2rp 2 +
196 rpreccl 2 + 1 2 +
197 195 196 mp1i i 1 k 1 2 +
198 159 197 ltsubrpd i 1 k i 1 2 < i
199 186 181 npcand i 1 k i - 1 + 1 = i
200 198 199 breqtrrd i 1 k i 1 2 < i - 1 + 1
201 btwnnz i 1 i 1 < i 1 2 i 1 2 < i - 1 + 1 ¬ i 1 2
202 190 194 200 201 syl3anc i 1 k ¬ i 1 2
203 nnz i 1 2 i 1 2
204 202 203 nsyl i 1 k ¬ i 1 2
205 189 204 eqneltrd i 1 k ¬ 2 i 1 2
206 205 intnand i 1 k ¬ 2 i 1 2 i 1 2
207 oveq1 n = 2 i 1 n 2 = 2 i 1 2
208 207 eleq1d n = 2 i 1 n 2 2 i 1 2
209 208 elrab 2 i 1 n | n 2 2 i 1 2 i 1 2
210 206 209 sylnibr i 1 k ¬ 2 i 1 n | n 2
211 210 adantl k i 1 k ¬ 2 i 1 n | n 2
212 179 211 eldifd k i 1 k 2 i 1 1 2 k 1 n | n 2
213 212 fmpttd k i 1 k 2 i 1 : 1 k 1 2 k 1 n | n 2
214 eqidd x 1 k i 1 k 2 i 1 = i 1 k 2 i 1
215 oveq2 i = x 2 i = 2 x
216 215 oveq1d i = x 2 i 1 = 2 x 1
217 216 adantl x 1 k i = x 2 i 1 = 2 x 1
218 id x 1 k x 1 k
219 ovexd x 1 k 2 x 1 V
220 214 217 218 219 fvmptd x 1 k i 1 k 2 i 1 x = 2 x 1
221 220 eqcomd x 1 k 2 x 1 = i 1 k 2 i 1 x
222 221 ad2antrr x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y 2 x 1 = i 1 k 2 i 1 x
223 simpr x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y i 1 k 2 i 1 x = i 1 k 2 i 1 y
224 eqidd y 1 k i 1 k 2 i 1 = i 1 k 2 i 1
225 oveq2 i = y 2 i = 2 y
226 225 oveq1d i = y 2 i 1 = 2 y 1
227 226 adantl y 1 k i = y 2 i 1 = 2 y 1
228 id y 1 k y 1 k
229 ovexd y 1 k 2 y 1 V
230 224 227 228 229 fvmptd y 1 k i 1 k 2 i 1 y = 2 y 1
231 230 ad2antlr x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y i 1 k 2 i 1 y = 2 y 1
232 222 223 231 3eqtrd x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y 2 x 1 = 2 y 1
233 2cnd x 1 k 2
234 elfzelz x 1 k x
235 234 zcnd x 1 k x
236 233 235 mulcld x 1 k 2 x
237 236 ad2antrr x 1 k y 1 k 2 x 1 = 2 y 1 2 x
238 2cnd y 1 k 2
239 elfzelz y 1 k y
240 239 zcnd y 1 k y
241 238 240 mulcld y 1 k 2 y
242 241 ad2antlr x 1 k y 1 k 2 x 1 = 2 y 1 2 y
243 1cnd x 1 k y 1 k 2 x 1 = 2 y 1 1
244 simpr x 1 k y 1 k 2 x 1 = 2 y 1 2 x 1 = 2 y 1
245 237 242 243 244 subcan2d x 1 k y 1 k 2 x 1 = 2 y 1 2 x = 2 y
246 235 ad2antrr x 1 k y 1 k 2 x = 2 y x
247 240 ad2antlr x 1 k y 1 k 2 x = 2 y y
248 2cnd x 1 k y 1 k 2 x = 2 y 2
249 183 a1i x 1 k y 1 k 2 x = 2 y 2 0
250 simpr x 1 k y 1 k 2 x = 2 y 2 x = 2 y
251 246 247 248 249 250 mulcanad x 1 k y 1 k 2 x = 2 y x = y
252 245 251 syldan x 1 k y 1 k 2 x 1 = 2 y 1 x = y
253 232 252 syldan x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
254 253 adantll k x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
255 254 ex k x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
256 255 ralrimivva k x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
257 dff13 i 1 k 2 i 1 : 1 k 1-1 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k 1 2 k 1 n | n 2 x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
258 213 256 257 sylanbrc k i 1 k 2 i 1 : 1 k 1-1 1 2 k 1 n | n 2
259 1zzd k j 1 2 k 1 n | n 2 1
260 33 adantr k j 1 2 k 1 n | n 2 k
261 134 elfzelzd j 1 2 k 1 n | n 2 j
262 zeo j j 2 j + 1 2
263 261 262 syl j 1 2 k 1 n | n 2 j 2 j + 1 2
264 263 adantl k j 1 2 k 1 n | n 2 j 2 j + 1 2
265 eldifn j 1 2 k 1 n | n 2 ¬ j n | n 2
266 134 92 syl j 1 2 k 1 n | n 2 j
267 266 adantr j 1 2 k 1 n | n 2 j 2 j
268 simpr j 1 2 k 1 n | n 2 j 2 j 2
269 267 nnred j 1 2 k 1 n | n 2 j 2 j
270 39 a1i j 1 2 k 1 n | n 2 j 2 2
271 267 nngt0d j 1 2 k 1 n | n 2 j 2 0 < j
272 2pos 0 < 2
273 272 a1i j 1 2 k 1 n | n 2 j 2 0 < 2
274 269 270 271 273 divgt0d j 1 2 k 1 n | n 2 j 2 0 < j 2
275 elnnz j 2 j 2 0 < j 2
276 268 274 275 sylanbrc j 1 2 k 1 n | n 2 j 2 j 2
277 oveq1 n = j n 2 = j 2
278 277 eleq1d n = j n 2 j 2
279 278 elrab j n | n 2 j j 2
280 267 276 279 sylanbrc j 1 2 k 1 n | n 2 j 2 j n | n 2
281 265 280 mtand j 1 2 k 1 n | n 2 ¬ j 2
282 281 adantl k j 1 2 k 1 n | n 2 ¬ j 2
283 pm2.53 j 2 j + 1 2 ¬ j 2 j + 1 2
284 264 282 283 sylc k j 1 2 k 1 n | n 2 j + 1 2
285 1p1e2 1 + 1 = 2
286 285 oveq1i 1 + 1 2 = 2 2
287 2div2e1 2 2 = 1
288 286 287 eqtr2i 1 = 1 + 1 2
289 1red j 1 2 k 1 1
290 289 289 readdcld j 1 2 k 1 1 + 1
291 92 nnred j 1 2 k 1 j
292 291 289 readdcld j 1 2 k 1 j + 1
293 195 a1i j 1 2 k 1 2 +
294 elfzle1 j 1 2 k 1 1 j
295 289 291 289 294 leadd1dd j 1 2 k 1 1 + 1 j + 1
296 290 292 293 295 lediv1dd j 1 2 k 1 1 + 1 2 j + 1 2
297 288 296 eqbrtrid j 1 2 k 1 1 j + 1 2
298 134 297 syl j 1 2 k 1 n | n 2 1 j + 1 2
299 298 adantl k j 1 2 k 1 n | n 2 1 j + 1 2
300 elfzel2 j 1 2 k 1 2 k 1
301 300 zred j 1 2 k 1 2 k 1
302 301 289 readdcld j 1 2 k 1 2 k - 1 + 1
303 elfzle2 j 1 2 k 1 j 2 k 1
304 291 301 289 303 leadd1dd j 1 2 k 1 j + 1 2 k - 1 + 1
305 292 302 293 304 lediv1dd j 1 2 k 1 j + 1 2 2 k - 1 + 1 2
306 305 adantl k j 1 2 k 1 j + 1 2 2 k - 1 + 1 2
307 51 adantr k j 1 2 k 1 2 k
308 1cnd k j 1 2 k 1 1
309 307 308 npcand k j 1 2 k 1 2 k - 1 + 1 = 2 k
310 309 oveq1d k j 1 2 k 1 2 k - 1 + 1 2 = 2 k 2
311 183 a1i k 2 0
312 45 44 311 divcan3d k 2 k 2 = k
313 312 adantr k j 1 2 k 1 2 k 2 = k
314 310 313 eqtrd k j 1 2 k 1 2 k - 1 + 1 2 = k
315 306 314 breqtrd k j 1 2 k 1 j + 1 2 k
316 134 315 sylan2 k j 1 2 k 1 n | n 2 j + 1 2 k
317 259 260 284 299 316 elfzd k j 1 2 k 1 n | n 2 j + 1 2 1 k
318 266 nncnd j 1 2 k 1 n | n 2 j
319 peano2cn j j + 1
320 2cnd j 2
321 183 a1i j 2 0
322 319 320 321 divcan2d j 2 j + 1 2 = j + 1
323 322 oveq1d j 2 j + 1 2 1 = j + 1 - 1
324 pncan1 j j + 1 - 1 = j
325 323 324 eqtr2d j j = 2 j + 1 2 1
326 318 325 syl j 1 2 k 1 n | n 2 j = 2 j + 1 2 1
327 326 adantl k j 1 2 k 1 n | n 2 j = 2 j + 1 2 1
328 oveq2 m = j + 1 2 2 m = 2 j + 1 2
329 328 oveq1d m = j + 1 2 2 m 1 = 2 j + 1 2 1
330 329 rspceeqv j + 1 2 1 k j = 2 j + 1 2 1 m 1 k j = 2 m 1
331 317 327 330 syl2anc k j 1 2 k 1 n | n 2 m 1 k j = 2 m 1
332 eqidd m 1 k j = 2 m 1 i 1 k 2 i 1 = i 1 k 2 i 1
333 oveq2 i = m 2 i = 2 m
334 333 oveq1d i = m 2 i 1 = 2 m 1
335 334 adantl m 1 k j = 2 m 1 i = m 2 i 1 = 2 m 1
336 simpl m 1 k j = 2 m 1 m 1 k
337 ovexd m 1 k j = 2 m 1 2 m 1 V
338 332 335 336 337 fvmptd m 1 k j = 2 m 1 i 1 k 2 i 1 m = 2 m 1
339 id j = 2 m 1 j = 2 m 1
340 339 eqcomd j = 2 m 1 2 m 1 = j
341 340 adantl m 1 k j = 2 m 1 2 m 1 = j
342 338 341 eqtr2d m 1 k j = 2 m 1 j = i 1 k 2 i 1 m
343 342 ex m 1 k j = 2 m 1 j = i 1 k 2 i 1 m
344 343 adantl k j 1 2 k 1 n | n 2 m 1 k j = 2 m 1 j = i 1 k 2 i 1 m
345 344 reximdva k j 1 2 k 1 n | n 2 m 1 k j = 2 m 1 m 1 k j = i 1 k 2 i 1 m
346 331 345 mpd k j 1 2 k 1 n | n 2 m 1 k j = i 1 k 2 i 1 m
347 346 ralrimiva k j 1 2 k 1 n | n 2 m 1 k j = i 1 k 2 i 1 m
348 dffo3 i 1 k 2 i 1 : 1 k onto 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k 1 2 k 1 n | n 2 j 1 2 k 1 n | n 2 m 1 k j = i 1 k 2 i 1 m
349 213 347 348 sylanbrc k i 1 k 2 i 1 : 1 k onto 1 2 k 1 n | n 2
350 df-f1o i 1 k 2 i 1 : 1 k 1-1 onto 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k 1-1 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k onto 1 2 k 1 n | n 2
351 258 349 350 sylanbrc k i 1 k 2 i 1 : 1 k 1-1 onto 1 2 k 1 n | n 2
352 351 adantl φ k i 1 k 2 i 1 : 1 k 1-1 onto 1 2 k 1 n | n 2
353 eqidd j 1 k i 1 k 2 i 1 = i 1 k 2 i 1
354 oveq2 i = j 2 i = 2 j
355 354 oveq1d i = j 2 i 1 = 2 j 1
356 355 adantl j 1 k i = j 2 i 1 = 2 j 1
357 id j 1 k j 1 k
358 ovexd j 1 k 2 j 1 V
359 353 356 357 358 fvmptd j 1 k i 1 k 2 i 1 j = 2 j 1
360 359 adantl φ k j 1 k i 1 k 2 i 1 j = 2 j 1
361 eleq1w j = i j 1 2 k 1 n | n 2 i 1 2 k 1 n | n 2
362 361 anbi2d j = i φ k j 1 2 k 1 n | n 2 φ k i 1 2 k 1 n | n 2
363 139 eleq1d j = i F j F i
364 362 363 imbi12d j = i φ k j 1 2 k 1 n | n 2 F j φ k i 1 2 k 1 n | n 2 F i
365 364 136 chvarvv φ k i 1 2 k 1 n | n 2 F i
366 143 144 352 360 365 fsumf1o φ k i 1 2 k 1 n | n 2 F i = j = 1 k F 2 j 1
367 96 142 366 3eqtrrd φ k j = 1 k F 2 j 1 = j = 1 2 k 1 F j
368 ovex 2 k 1 V
369 21 fvmpt2 k 2 k 1 V k 2 k 1 k = 2 k 1
370 368 369 mpan2 k k 2 k 1 k = 2 k 1
371 370 oveq2d k 1 k 2 k 1 k = 1 2 k 1
372 371 eqcomd k 1 2 k 1 = 1 k 2 k 1 k
373 372 sumeq1d k j = 1 2 k 1 F j = j = 1 k 2 k 1 k F j
374 373 adantl φ k j = 1 2 k 1 F j = j = 1 k 2 k 1 k F j
375 367 374 eqtrd φ k j = 1 k F 2 j 1 = j = 1 k 2 k 1 k F j
376 elfznn j 1 k j
377 376 adantl φ k j 1 k j
378 1 adantr φ j 1 k F :
379 31 a1i j 1 k 2
380 elfzelz j 1 k j
381 379 380 zmulcld j 1 k 2 j
382 1zzd j 1 k 1
383 381 382 zsubcld j 1 k 2 j 1
384 0red j 1 k 0
385 39 a1i j 1 k 2
386 25 385 eqeltrid j 1 k 2 1
387 1red j 1 k 1
388 386 387 resubcld j 1 k 2 1 1
389 383 zred j 1 k 2 j 1
390 0lt1 0 < 1
391 153 a1i j 1 k 1 = 2 1 1
392 390 391 breqtrid j 1 k 0 < 2 1 1
393 381 zred j 1 k 2 j
394 376 nnred j 1 k j
395 161 a1i j 1 k 0 2
396 elfzle1 j 1 k 1 j
397 387 394 385 395 396 lemul2ad j 1 k 2 1 2 j
398 386 393 387 397 lesub1dd j 1 k 2 1 1 2 j 1
399 384 388 389 392 398 ltletrd j 1 k 0 < 2 j 1
400 elnnz 2 j 1 2 j 1 0 < 2 j 1
401 383 399 400 sylanbrc j 1 k 2 j 1
402 401 adantl φ j 1 k 2 j 1
403 378 402 ffvelrnd φ j 1 k F 2 j 1
404 403 adantlr φ k j 1 k F 2 j 1
405 60 fveq2d k = j F 2 k 1 = F 2 j 1
406 405 cbvmptv k F 2 k 1 = j F 2 j 1
407 406 fvmpt2 j F 2 j 1 k F 2 k 1 j = F 2 j 1
408 377 404 407 syl2anc φ k j 1 k k F 2 k 1 j = F 2 j 1
409 simpr φ k k
410 409 11 eleqtrdi φ k k 1
411 408 410 404 fsumser φ k j = 1 k F 2 j 1 = seq 1 + k F 2 k 1 k
412 eqidd φ k j 1 k 2 k 1 k F j = F j
413 155 a1i k 2 1
414 1red k 1
415 161 a1i k 0 2
416 nnge1 k 1 k
417 414 41 40 415 416 lemul2ad k 2 1 2 k
418 413 42 414 417 lesub1dd k 2 1 1 2 k 1
419 153 418 eqbrtrid k 1 2 k 1
420 eluz2 2 k 1 1 1 2 k 1 1 2 k 1
421 37 66 419 420 syl3anbrc k 2 k 1 1
422 68 421 eqeltrd k k 2 k 1 k 1
423 422 adantl φ k k 2 k 1 k 1
424 simpll φ k j 1 k 2 k 1 k φ
425 simpr k j 1 k 2 k 1 k j 1 k 2 k 1 k
426 371 adantr k j 1 k 2 k 1 k 1 k 2 k 1 k = 1 2 k 1
427 425 426 eleqtrd k j 1 k 2 k 1 k j 1 2 k 1
428 427 adantll φ k j 1 k 2 k 1 k j 1 2 k 1
429 424 428 94 syl2anc φ k j 1 k 2 k 1 k F j
430 412 423 429 fsumser φ k j = 1 k 2 k 1 k F j = seq 1 + F k 2 k 1 k
431 375 411 430 3eqtr3d φ k seq 1 + k F 2 k 1 k = seq 1 + F k 2 k 1 k
432 4 5 9 10 11 12 14 17 3 30 74 76 431 climsuse φ seq 1 + k F 2 k 1 B
433 eqidd φ k F k = F k
434 11 12 433 15 isum φ k F k = seq 1 + F
435 climrel Rel
436 435 releldmi seq 1 + F B seq 1 + F dom
437 3 436 syl φ seq 1 + F dom
438 climdm seq 1 + F dom seq 1 + F seq 1 + F
439 437 438 sylib φ seq 1 + F seq 1 + F
440 climuni seq 1 + F seq 1 + F seq 1 + F B seq 1 + F = B
441 439 3 440 syl2anc φ seq 1 + F = B
442 435 a1i φ Rel
443 releldm Rel seq 1 + k F 2 k 1 B seq 1 + k F 2 k 1 dom
444 442 432 443 syl2anc φ seq 1 + k F 2 k 1 dom
445 climdm seq 1 + k F 2 k 1 dom seq 1 + k F 2 k 1 seq 1 + k F 2 k 1
446 444 445 sylib φ seq 1 + k F 2 k 1 seq 1 + k F 2 k 1
447 406 a1i φ k F 2 k 1 = j F 2 j 1
448 447 seqeq3d φ seq 1 + k F 2 k 1 = seq 1 + j F 2 j 1
449 448 fveq2d φ seq 1 + k F 2 k 1 = seq 1 + j F 2 j 1
450 446 449 breqtrd φ seq 1 + k F 2 k 1 seq 1 + j F 2 j 1
451 climuni seq 1 + k F 2 k 1 B seq 1 + k F 2 k 1 seq 1 + j F 2 j 1 B = seq 1 + j F 2 j 1
452 432 450 451 syl2anc φ B = seq 1 + j F 2 j 1
453 eqidd φ k j F 2 j 1 = j F 2 j 1
454 eqcom k = j j = k
455 eqcom F 2 k 1 = F 2 j 1 F 2 j 1 = F 2 k 1
456 405 454 455 3imtr3i j = k F 2 j 1 = F 2 k 1
457 456 adantl φ k j = k F 2 j 1 = F 2 k 1
458 1 adantr φ k F :
459 421 11 eleqtrrdi k 2 k 1
460 459 adantl φ k 2 k 1
461 458 460 ffvelrnd φ k F 2 k 1
462 453 457 409 461 fvmptd φ k j F 2 j 1 k = F 2 k 1
463 11 12 462 461 isum φ k F 2 k 1 = seq 1 + j F 2 j 1
464 452 463 eqtr4d φ B = k F 2 k 1
465 434 441 464 3eqtrd φ k F k = k F 2 k 1
466 432 465 jca φ seq 1 + k F 2 k 1 B k F k = k F 2 k 1