Metamath Proof Explorer


Theorem sumnnodd

Description: A series indexed by NN with only odd terms. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses sumnnodd.1 φ F :
sumnnodd.even0 φ k k 2 F k = 0
sumnnodd.sc φ seq 1 + F B
Assertion sumnnodd φ seq 1 + k F 2 k 1 B k F k = k F 2 k 1

Proof

Step Hyp Ref Expression
1 sumnnodd.1 φ F :
2 sumnnodd.even0 φ k k 2 F k = 0
3 sumnnodd.sc φ seq 1 + F B
4 nfv k φ
5 nfcv _ k seq 1 + F
6 nfcv _ k 1
7 nfcv _ k +
8 nfmpt1 _ k k F 2 k 1
9 6 7 8 nfseq _ k seq 1 + k F 2 k 1
10 nfmpt1 _ k k 2 k 1
11 nnuz = 1
12 1zzd φ 1
13 seqex seq 1 + F V
14 13 a1i φ seq 1 + F V
15 1 ffvelrnda φ k F k
16 11 12 15 serf φ seq 1 + F :
17 16 ffvelrnda φ k seq 1 + F k
18 1nn 1
19 oveq2 k = 1 2 k = 2 1
20 19 oveq1d k = 1 2 k 1 = 2 1 1
21 eqid k 2 k 1 = k 2 k 1
22 ovex 2 1 1 V
23 20 21 22 fvmpt 1 k 2 k 1 1 = 2 1 1
24 18 23 ax-mp k 2 k 1 1 = 2 1 1
25 2t1e2 2 1 = 2
26 25 oveq1i 2 1 1 = 2 1
27 2m1e1 2 1 = 1
28 24 26 27 3eqtri k 2 k 1 1 = 1
29 28 18 eqeltri k 2 k 1 1
30 29 a1i φ k 2 k 1 1
31 2z 2
32 31 a1i k 2
33 nnz k k
34 32 33 zmulcld k 2 k
35 33 peano2zd k k + 1
36 32 35 zmulcld k 2 k + 1
37 1zzd k 1
38 36 37 zsubcld k 2 k + 1 1
39 2re 2
40 39 a1i k 2
41 nnre k k
42 40 41 remulcld k 2 k
43 42 lep1d k 2 k 2 k + 1
44 2cnd k 2
45 nncn k k
46 1cnd k 1
47 44 45 46 adddid k 2 k + 1 = 2 k + 2 1
48 25 oveq2i 2 k + 2 1 = 2 k + 2
49 47 48 syl6eq k 2 k + 1 = 2 k + 2
50 49 oveq1d k 2 k + 1 1 = 2 k + 2 - 1
51 44 45 mulcld k 2 k
52 51 44 46 addsubassd k 2 k + 2 - 1 = 2 k + 2 - 1
53 27 oveq2i 2 k + 2 - 1 = 2 k + 1
54 53 a1i k 2 k + 2 - 1 = 2 k + 1
55 50 52 54 3eqtrrd k 2 k + 1 = 2 k + 1 1
56 43 55 breqtrd k 2 k 2 k + 1 1
57 eluz2 2 k + 1 1 2 k 2 k 2 k + 1 1 2 k 2 k + 1 1
58 34 38 56 57 syl3anbrc k 2 k + 1 1 2 k
59 oveq2 k = j 2 k = 2 j
60 59 oveq1d k = j 2 k 1 = 2 j 1
61 60 cbvmptv k 2 k 1 = j 2 j 1
62 oveq2 j = k + 1 2 j = 2 k + 1
63 62 oveq1d j = k + 1 2 j 1 = 2 k + 1 1
64 peano2nn k k + 1
65 61 63 64 38 fvmptd3 k k 2 k 1 k + 1 = 2 k + 1 1
66 34 37 zsubcld k 2 k 1
67 21 fvmpt2 k 2 k 1 k 2 k 1 k = 2 k 1
68 66 67 mpdan k k 2 k 1 k = 2 k 1
69 68 oveq1d k k 2 k 1 k + 1 = 2 k - 1 + 1
70 51 46 npcand k 2 k - 1 + 1 = 2 k
71 69 70 eqtrd k k 2 k 1 k + 1 = 2 k
72 71 fveq2d k k 2 k 1 k + 1 = 2 k
73 58 65 72 3eltr4d k k 2 k 1 k + 1 k 2 k 1 k + 1
74 73 adantl φ k k 2 k 1 k + 1 k 2 k 1 k + 1
75 seqex seq 1 + k F 2 k 1 V
76 75 a1i φ seq 1 + k F 2 k 1 V
77 incom 1 2 k 1 n | n 2 1 2 k 1 n | n 2 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
78 inss2 1 2 k 1 n | n 2 n | n 2
79 ssrin 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2
80 78 79 ax-mp 1 2 k 1 n | n 2 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2
81 77 80 eqsstri 1 2 k 1 n | n 2 1 2 k 1 n | n 2 n | n 2 1 2 k 1 n | n 2
82 disjdif n | n 2 1 2 k 1 n | n 2 =
83 81 82 sseqtri 1 2 k 1 n | n 2 1 2 k 1 n | n 2
84 ss0 1 2 k 1 n | n 2 1 2 k 1 n | n 2 1 2 k 1 n | n 2 1 2 k 1 n | n 2 =
85 83 84 mp1i φ k 1 2 k 1 n | n 2 1 2 k 1 n | n 2 =
86 uncom 1 2 k 1 n | n 2 1 2 k 1 n | n 2 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
87 inundif 1 2 k 1 n | n 2 1 2 k 1 n | n 2 = 1 2 k 1
88 86 87 eqtr2i 1 2 k 1 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
89 88 a1i φ k 1 2 k 1 = 1 2 k 1 n | n 2 1 2 k 1 n | n 2
90 fzfid φ k 1 2 k 1 Fin
91 1 adantr φ j 1 2 k 1 F :
92 elfznn j 1 2 k 1 j
93 92 adantl φ j 1 2 k 1 j
94 91 93 ffvelrnd φ j 1 2 k 1 F j
95 94 adantlr φ k j 1 2 k 1 F j
96 85 89 90 95 fsumsplit φ k j = 1 2 k 1 F j = j 1 2 k 1 n | n 2 F j + j 1 2 k 1 n | n 2 F j
97 simpl φ j 1 2 k 1 n | n 2 φ
98 ssrab2 n | n 2
99 78 sseli j 1 2 k 1 n | n 2 j n | n 2
100 98 99 sseldi j 1 2 k 1 n | n 2 j
101 100 adantl φ j 1 2 k 1 n | n 2 j
102 oveq1 k = j k 2 = j 2
103 102 eleq1d k = j k 2 j 2
104 oveq1 n = k n 2 = k 2
105 104 eleq1d n = k n 2 k 2
106 105 elrab k n | n 2 k k 2
107 106 simprbi k n | n 2 k 2
108 103 107 vtoclga j n | n 2 j 2
109 99 108 syl j 1 2 k 1 n | n 2 j 2
110 109 adantl φ j 1 2 k 1 n | n 2 j 2
111 eleq1w k = j k j
112 111 103 3anbi23d k = j φ k k 2 φ j j 2
113 fveqeq2 k = j F k = 0 F j = 0
114 112 113 imbi12d k = j φ k k 2 F k = 0 φ j j 2 F j = 0
115 114 2 chvarvv φ j j 2 F j = 0
116 97 101 110 115 syl3anc φ j 1 2 k 1 n | n 2 F j = 0
117 116 sumeq2dv φ j 1 2 k 1 n | n 2 F j = j 1 2 k 1 n | n 2 0
118 fzfid φ 1 2 k 1 Fin
119 inss1 1 2 k 1 n | n 2 1 2 k 1
120 119 a1i φ 1 2 k 1 n | n 2 1 2 k 1
121 ssfi 1 2 k 1 Fin 1 2 k 1 n | n 2 1 2 k 1 1 2 k 1 n | n 2 Fin
122 118 120 121 syl2anc φ 1 2 k 1 n | n 2 Fin
123 122 olcd φ 1 2 k 1 n | n 2 C 1 2 k 1 n | n 2 Fin
124 sumz 1 2 k 1 n | n 2 C 1 2 k 1 n | n 2 Fin j 1 2 k 1 n | n 2 0 = 0
125 123 124 syl φ j 1 2 k 1 n | n 2 0 = 0
126 117 125 eqtrd φ j 1 2 k 1 n | n 2 F j = 0
127 126 adantr φ k j 1 2 k 1 n | n 2 F j = 0
128 127 oveq2d φ k j 1 2 k 1 n | n 2 F j + j 1 2 k 1 n | n 2 F j = j 1 2 k 1 n | n 2 F j + 0
129 fzfi 1 2 k 1 Fin
130 difss 1 2 k 1 n | n 2 1 2 k 1
131 ssfi 1 2 k 1 Fin 1 2 k 1 n | n 2 1 2 k 1 1 2 k 1 n | n 2 Fin
132 129 130 131 mp2an 1 2 k 1 n | n 2 Fin
133 132 a1i φ k 1 2 k 1 n | n 2 Fin
134 130 sseli j 1 2 k 1 n | n 2 j 1 2 k 1
135 134 94 sylan2 φ j 1 2 k 1 n | n 2 F j
136 135 adantlr φ k j 1 2 k 1 n | n 2 F j
137 133 136 fsumcl φ k j 1 2 k 1 n | n 2 F j
138 137 addid1d φ k j 1 2 k 1 n | n 2 F j + 0 = j 1 2 k 1 n | n 2 F j
139 fveq2 j = i F j = F i
140 139 cbvsumv j 1 2 k 1 n | n 2 F j = i 1 2 k 1 n | n 2 F i
141 138 140 syl6eq φ k j 1 2 k 1 n | n 2 F j + 0 = i 1 2 k 1 n | n 2 F i
142 128 141 eqtrd φ k j 1 2 k 1 n | n 2 F j + j 1 2 k 1 n | n 2 F j = i 1 2 k 1 n | n 2 F i
143 fveq2 i = 2 j 1 F i = F 2 j 1
144 fzfid φ k 1 k Fin
145 1zzd k i 1 k 1
146 66 adantr k i 1 k 2 k 1
147 31 a1i i 1 k 2
148 elfzelz i 1 k i
149 147 148 zmulcld i 1 k 2 i
150 1zzd i 1 k 1
151 149 150 zsubcld i 1 k 2 i 1
152 151 adantl k i 1 k 2 i 1
153 145 146 152 3jca k i 1 k 1 2 k 1 2 i 1
154 26 27 eqtr2i 1 = 2 1 1
155 1re 1
156 39 155 remulcli 2 1
157 156 a1i i 1 k 2 1
158 149 zred i 1 k 2 i
159 1red i 1 k 1
160 148 zred i 1 k i
161 39 a1i i 1 k 2
162 0le2 0 2
163 162 a1i i 1 k 0 2
164 elfzle1 i 1 k 1 i
165 159 160 161 163 164 lemul2ad i 1 k 2 1 2 i
166 157 158 159 165 lesub1dd i 1 k 2 1 1 2 i 1
167 154 166 eqbrtrid i 1 k 1 2 i 1
168 167 adantl k i 1 k 1 2 i 1
169 158 adantl k i 1 k 2 i
170 42 adantr k i 1 k 2 k
171 1red k i 1 k 1
172 160 adantl k i 1 k i
173 41 adantr k i 1 k k
174 39 a1i k i 1 k 2
175 162 a1i k i 1 k 0 2
176 elfzle2 i 1 k i k
177 176 adantl k i 1 k i k
178 172 173 174 175 177 lemul2ad k i 1 k 2 i 2 k
179 169 170 171 178 lesub1dd k i 1 k 2 i 1 2 k 1
180 168 179 jca k i 1 k 1 2 i 1 2 i 1 2 k 1
181 elfz2 2 i 1 1 2 k 1 1 2 k 1 2 i 1 1 2 i 1 2 i 1 2 k 1
182 153 180 181 sylanbrc k i 1 k 2 i 1 1 2 k 1
183 149 zcnd i 1 k 2 i
184 1cnd i 1 k 1
185 2cnd i 1 k 2
186 2ne0 2 0
187 186 a1i i 1 k 2 0
188 183 184 185 187 divsubdird i 1 k 2 i 1 2 = 2 i 2 1 2
189 148 zcnd i 1 k i
190 189 185 187 divcan3d i 1 k 2 i 2 = i
191 190 oveq1d i 1 k 2 i 2 1 2 = i 1 2
192 188 191 eqtrd i 1 k 2 i 1 2 = i 1 2
193 148 150 zsubcld i 1 k i 1
194 161 187 rereccld i 1 k 1 2
195 halflt1 1 2 < 1
196 195 a1i i 1 k 1 2 < 1
197 194 159 160 196 ltsub2dd i 1 k i 1 < i 1 2
198 2rp 2 +
199 rpreccl 2 + 1 2 +
200 198 199 mp1i i 1 k 1 2 +
201 160 200 ltsubrpd i 1 k i 1 2 < i
202 189 184 npcand i 1 k i - 1 + 1 = i
203 201 202 breqtrrd i 1 k i 1 2 < i - 1 + 1
204 btwnnz i 1 i 1 < i 1 2 i 1 2 < i - 1 + 1 ¬ i 1 2
205 193 197 203 204 syl3anc i 1 k ¬ i 1 2
206 nnz i 1 2 i 1 2
207 205 206 nsyl i 1 k ¬ i 1 2
208 192 207 eqneltrd i 1 k ¬ 2 i 1 2
209 208 intnand i 1 k ¬ 2 i 1 2 i 1 2
210 oveq1 n = 2 i 1 n 2 = 2 i 1 2
211 210 eleq1d n = 2 i 1 n 2 2 i 1 2
212 211 elrab 2 i 1 n | n 2 2 i 1 2 i 1 2
213 209 212 sylnibr i 1 k ¬ 2 i 1 n | n 2
214 213 adantl k i 1 k ¬ 2 i 1 n | n 2
215 182 214 eldifd k i 1 k 2 i 1 1 2 k 1 n | n 2
216 215 fmpttd k i 1 k 2 i 1 : 1 k 1 2 k 1 n | n 2
217 eqidd x 1 k i 1 k 2 i 1 = i 1 k 2 i 1
218 oveq2 i = x 2 i = 2 x
219 218 oveq1d i = x 2 i 1 = 2 x 1
220 219 adantl x 1 k i = x 2 i 1 = 2 x 1
221 id x 1 k x 1 k
222 ovexd x 1 k 2 x 1 V
223 217 220 221 222 fvmptd x 1 k i 1 k 2 i 1 x = 2 x 1
224 223 eqcomd x 1 k 2 x 1 = i 1 k 2 i 1 x
225 224 ad2antrr x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y 2 x 1 = i 1 k 2 i 1 x
226 simpr x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y i 1 k 2 i 1 x = i 1 k 2 i 1 y
227 eqidd y 1 k i 1 k 2 i 1 = i 1 k 2 i 1
228 oveq2 i = y 2 i = 2 y
229 228 oveq1d i = y 2 i 1 = 2 y 1
230 229 adantl y 1 k i = y 2 i 1 = 2 y 1
231 id y 1 k y 1 k
232 ovexd y 1 k 2 y 1 V
233 227 230 231 232 fvmptd y 1 k i 1 k 2 i 1 y = 2 y 1
234 233 ad2antlr x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y i 1 k 2 i 1 y = 2 y 1
235 225 226 234 3eqtrd x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y 2 x 1 = 2 y 1
236 2cnd x 1 k 2
237 elfzelz x 1 k x
238 237 zcnd x 1 k x
239 236 238 mulcld x 1 k 2 x
240 239 ad2antrr x 1 k y 1 k 2 x 1 = 2 y 1 2 x
241 2cnd y 1 k 2
242 elfzelz y 1 k y
243 242 zcnd y 1 k y
244 241 243 mulcld y 1 k 2 y
245 244 ad2antlr x 1 k y 1 k 2 x 1 = 2 y 1 2 y
246 1cnd x 1 k y 1 k 2 x 1 = 2 y 1 1
247 simpr x 1 k y 1 k 2 x 1 = 2 y 1 2 x 1 = 2 y 1
248 240 245 246 247 subcan2d x 1 k y 1 k 2 x 1 = 2 y 1 2 x = 2 y
249 238 ad2antrr x 1 k y 1 k 2 x = 2 y x
250 243 ad2antlr x 1 k y 1 k 2 x = 2 y y
251 2cnd x 1 k y 1 k 2 x = 2 y 2
252 186 a1i x 1 k y 1 k 2 x = 2 y 2 0
253 simpr x 1 k y 1 k 2 x = 2 y 2 x = 2 y
254 249 250 251 252 253 mulcanad x 1 k y 1 k 2 x = 2 y x = y
255 248 254 syldan x 1 k y 1 k 2 x 1 = 2 y 1 x = y
256 235 255 syldan x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
257 256 adantll k x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
258 257 ex k x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
259 258 ralrimivva k x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
260 dff13 i 1 k 2 i 1 : 1 k 1-1 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k 1 2 k 1 n | n 2 x 1 k y 1 k i 1 k 2 i 1 x = i 1 k 2 i 1 y x = y
261 216 259 260 sylanbrc k i 1 k 2 i 1 : 1 k 1-1 1 2 k 1 n | n 2
262 1zzd k j 1 2 k 1 n | n 2 1
263 33 adantr k j 1 2 k 1 n | n 2 k
264 fzssz 1 2 k 1
265 264 134 sseldi j 1 2 k 1 n | n 2 j
266 zeo j j 2 j + 1 2
267 265 266 syl j 1 2 k 1 n | n 2 j 2 j + 1 2
268 267 adantl k j 1 2 k 1 n | n 2 j 2 j + 1 2
269 eldifn j 1 2 k 1 n | n 2 ¬ j n | n 2
270 134 92 syl j 1 2 k 1 n | n 2 j
271 270 adantr j 1 2 k 1 n | n 2 j 2 j
272 simpr j 1 2 k 1 n | n 2 j 2 j 2
273 271 nnred j 1 2 k 1 n | n 2 j 2 j
274 39 a1i j 1 2 k 1 n | n 2 j 2 2
275 271 nngt0d j 1 2 k 1 n | n 2 j 2 0 < j
276 2pos 0 < 2
277 276 a1i j 1 2 k 1 n | n 2 j 2 0 < 2
278 273 274 275 277 divgt0d j 1 2 k 1 n | n 2 j 2 0 < j 2
279 elnnz j 2 j 2 0 < j 2
280 272 278 279 sylanbrc j 1 2 k 1 n | n 2 j 2 j 2
281 oveq1 n = j n 2 = j 2
282 281 eleq1d n = j n 2 j 2
283 282 elrab j n | n 2 j j 2
284 271 280 283 sylanbrc j 1 2 k 1 n | n 2 j 2 j n | n 2
285 269 284 mtand j 1 2 k 1 n | n 2 ¬ j 2
286 285 adantl k j 1 2 k 1 n | n 2 ¬ j 2
287 pm2.53 j 2 j + 1 2 ¬ j 2 j + 1 2
288 268 286 287 sylc k j 1 2 k 1 n | n 2 j + 1 2
289 262 263 288 3jca k j 1 2 k 1 n | n 2 1 k j + 1 2
290 1p1e2 1 + 1 = 2
291 290 oveq1i 1 + 1 2 = 2 2
292 2div2e1 2 2 = 1
293 291 292 eqtr2i 1 = 1 + 1 2
294 1red j 1 2 k 1 1
295 294 294 readdcld j 1 2 k 1 1 + 1
296 92 nnred j 1 2 k 1 j
297 296 294 readdcld j 1 2 k 1 j + 1
298 198 a1i j 1 2 k 1 2 +
299 elfzle1 j 1 2 k 1 1 j
300 294 296 294 299 leadd1dd j 1 2 k 1 1 + 1 j + 1
301 295 297 298 300 lediv1dd j 1 2 k 1 1 + 1 2 j + 1 2
302 293 301 eqbrtrid j 1 2 k 1 1 j + 1 2
303 134 302 syl j 1 2 k 1 n | n 2 1 j + 1 2
304 303 adantl k j 1 2 k 1 n | n 2 1 j + 1 2
305 elfzel2 j 1 2 k 1 2 k 1
306 305 zred j 1 2 k 1 2 k 1
307 306 294 readdcld j 1 2 k 1 2 k - 1 + 1
308 elfzle2 j 1 2 k 1 j 2 k 1
309 296 306 294 308 leadd1dd j 1 2 k 1 j + 1 2 k - 1 + 1
310 297 307 298 309 lediv1dd j 1 2 k 1 j + 1 2 2 k - 1 + 1 2
311 310 adantl k j 1 2 k 1 j + 1 2 2 k - 1 + 1 2
312 51 adantr k j 1 2 k 1 2 k
313 1cnd k j 1 2 k 1 1
314 312 313 npcand k j 1 2 k 1 2 k - 1 + 1 = 2 k
315 314 oveq1d k j 1 2 k 1 2 k - 1 + 1 2 = 2 k 2
316 186 a1i k 2 0
317 45 44 316 divcan3d k 2 k 2 = k
318 317 adantr k j 1 2 k 1 2 k 2 = k
319 315 318 eqtrd k j 1 2 k 1 2 k - 1 + 1 2 = k
320 311 319 breqtrd k j 1 2 k 1 j + 1 2 k
321 134 320 sylan2 k j 1 2 k 1 n | n 2 j + 1 2 k
322 289 304 321 jca32 k j 1 2 k 1 n | n 2 1 k j + 1 2 1 j + 1 2 j + 1 2 k
323 elfz2 j + 1 2 1 k 1 k j + 1 2 1 j + 1 2 j + 1 2 k
324 322 323 sylibr k j 1 2 k 1 n | n 2 j + 1 2 1 k
325 270 nncnd j 1 2 k 1 n | n 2 j
326 peano2cn j j + 1
327 2cnd j 2
328 186 a1i j 2 0
329 326 327 328 divcan2d j 2 j + 1 2 = j + 1
330 329 oveq1d j 2 j + 1 2 1 = j + 1 - 1
331 pncan1 j j + 1 - 1 = j
332 330 331 eqtr2d j j = 2 j + 1 2 1
333 325 332 syl j 1 2 k 1 n | n 2 j = 2 j + 1 2 1
334 333 adantl k j 1 2 k 1 n | n 2 j = 2 j + 1 2 1
335 oveq2 m = j + 1 2 2 m = 2 j + 1 2
336 335 oveq1d m = j + 1 2 2 m 1 = 2 j + 1 2 1
337 336 rspceeqv j + 1 2 1 k j = 2 j + 1 2 1 m 1 k j = 2 m 1
338 324 334 337 syl2anc k j 1 2 k 1 n | n 2 m 1 k j = 2 m 1
339 eqidd m 1 k j = 2 m 1 i 1 k 2 i 1 = i 1 k 2 i 1
340 oveq2 i = m 2 i = 2 m
341 340 oveq1d i = m 2 i 1 = 2 m 1
342 341 adantl m 1 k j = 2 m 1 i = m 2 i 1 = 2 m 1
343 simpl m 1 k j = 2 m 1 m 1 k
344 ovexd m 1 k j = 2 m 1 2 m 1 V
345 339 342 343 344 fvmptd m 1 k j = 2 m 1 i 1 k 2 i 1 m = 2 m 1
346 id j = 2 m 1 j = 2 m 1
347 346 eqcomd j = 2 m 1 2 m 1 = j
348 347 adantl m 1 k j = 2 m 1 2 m 1 = j
349 345 348 eqtr2d m 1 k j = 2 m 1 j = i 1 k 2 i 1 m
350 349 ex m 1 k j = 2 m 1 j = i 1 k 2 i 1 m
351 350 adantl k j 1 2 k 1 n | n 2 m 1 k j = 2 m 1 j = i 1 k 2 i 1 m
352 351 reximdva k j 1 2 k 1 n | n 2 m 1 k j = 2 m 1 m 1 k j = i 1 k 2 i 1 m
353 338 352 mpd k j 1 2 k 1 n | n 2 m 1 k j = i 1 k 2 i 1 m
354 353 ralrimiva k j 1 2 k 1 n | n 2 m 1 k j = i 1 k 2 i 1 m
355 dffo3 i 1 k 2 i 1 : 1 k onto 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k 1 2 k 1 n | n 2 j 1 2 k 1 n | n 2 m 1 k j = i 1 k 2 i 1 m
356 216 354 355 sylanbrc k i 1 k 2 i 1 : 1 k onto 1 2 k 1 n | n 2
357 df-f1o i 1 k 2 i 1 : 1 k 1-1 onto 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k 1-1 1 2 k 1 n | n 2 i 1 k 2 i 1 : 1 k onto 1 2 k 1 n | n 2
358 261 356 357 sylanbrc k i 1 k 2 i 1 : 1 k 1-1 onto 1 2 k 1 n | n 2
359 358 adantl φ k i 1 k 2 i 1 : 1 k 1-1 onto 1 2 k 1 n | n 2
360 eqidd j 1 k i 1 k 2 i 1 = i 1 k 2 i 1
361 oveq2 i = j 2 i = 2 j
362 361 oveq1d i = j 2 i 1 = 2 j 1
363 362 adantl j 1 k i = j 2 i 1 = 2 j 1
364 id j 1 k j 1 k
365 ovexd j 1 k 2 j 1 V
366 360 363 364 365 fvmptd j 1 k i 1 k 2 i 1 j = 2 j 1
367 366 adantl φ k j 1 k i 1 k 2 i 1 j = 2 j 1
368 eleq1w j = i j 1 2 k 1 n | n 2 i 1 2 k 1 n | n 2
369 368 anbi2d j = i φ k j 1 2 k 1 n | n 2 φ k i 1 2 k 1 n | n 2
370 139 eleq1d j = i F j F i
371 369 370 imbi12d j = i φ k j 1 2 k 1 n | n 2 F j φ k i 1 2 k 1 n | n 2 F i
372 371 136 chvarvv φ k i 1 2 k 1 n | n 2 F i
373 143 144 359 367 372 fsumf1o φ k i 1 2 k 1 n | n 2 F i = j = 1 k F 2 j 1
374 96 142 373 3eqtrrd φ k j = 1 k F 2 j 1 = j = 1 2 k 1 F j
375 ovex 2 k 1 V
376 21 fvmpt2 k 2 k 1 V k 2 k 1 k = 2 k 1
377 375 376 mpan2 k k 2 k 1 k = 2 k 1
378 377 oveq2d k 1 k 2 k 1 k = 1 2 k 1
379 378 eqcomd k 1 2 k 1 = 1 k 2 k 1 k
380 379 sumeq1d k j = 1 2 k 1 F j = j = 1 k 2 k 1 k F j
381 380 adantl φ k j = 1 2 k 1 F j = j = 1 k 2 k 1 k F j
382 374 381 eqtrd φ k j = 1 k F 2 j 1 = j = 1 k 2 k 1 k F j
383 elfznn j 1 k j
384 383 adantl φ k j 1 k j
385 1 adantr φ j 1 k F :
386 31 a1i j 1 k 2
387 elfzelz j 1 k j
388 386 387 zmulcld j 1 k 2 j
389 1zzd j 1 k 1
390 388 389 zsubcld j 1 k 2 j 1
391 0red j 1 k 0
392 39 a1i j 1 k 2
393 25 392 eqeltrid j 1 k 2 1
394 1red j 1 k 1
395 393 394 resubcld j 1 k 2 1 1
396 390 zred j 1 k 2 j 1
397 0lt1 0 < 1
398 154 a1i j 1 k 1 = 2 1 1
399 397 398 breqtrid j 1 k 0 < 2 1 1
400 388 zred j 1 k 2 j
401 383 nnred j 1 k j
402 162 a1i j 1 k 0 2
403 elfzle1 j 1 k 1 j
404 394 401 392 402 403 lemul2ad j 1 k 2 1 2 j
405 393 400 394 404 lesub1dd j 1 k 2 1 1 2 j 1
406 391 395 396 399 405 ltletrd j 1 k 0 < 2 j 1
407 elnnz 2 j 1 2 j 1 0 < 2 j 1
408 390 406 407 sylanbrc j 1 k 2 j 1
409 408 adantl φ j 1 k 2 j 1
410 385 409 ffvelrnd φ j 1 k F 2 j 1
411 410 adantlr φ k j 1 k F 2 j 1
412 60 fveq2d k = j F 2 k 1 = F 2 j 1
413 412 cbvmptv k F 2 k 1 = j F 2 j 1
414 413 fvmpt2 j F 2 j 1 k F 2 k 1 j = F 2 j 1
415 384 411 414 syl2anc φ k j 1 k k F 2 k 1 j = F 2 j 1
416 simpr φ k k
417 416 11 eleqtrdi φ k k 1
418 415 417 411 fsumser φ k j = 1 k F 2 j 1 = seq 1 + k F 2 k 1 k
419 eqidd φ k j 1 k 2 k 1 k F j = F j
420 156 a1i k 2 1
421 1red k 1
422 162 a1i k 0 2
423 nnge1 k 1 k
424 421 41 40 422 423 lemul2ad k 2 1 2 k
425 420 42 421 424 lesub1dd k 2 1 1 2 k 1
426 154 425 eqbrtrid k 1 2 k 1
427 eluz2 2 k 1 1 1 2 k 1 1 2 k 1
428 37 66 426 427 syl3anbrc k 2 k 1 1
429 68 428 eqeltrd k k 2 k 1 k 1
430 429 adantl φ k k 2 k 1 k 1
431 simpll φ k j 1 k 2 k 1 k φ
432 simpr k j 1 k 2 k 1 k j 1 k 2 k 1 k
433 378 adantr k j 1 k 2 k 1 k 1 k 2 k 1 k = 1 2 k 1
434 432 433 eleqtrd k j 1 k 2 k 1 k j 1 2 k 1
435 434 adantll φ k j 1 k 2 k 1 k j 1 2 k 1
436 431 435 94 syl2anc φ k j 1 k 2 k 1 k F j
437 419 430 436 fsumser φ k j = 1 k 2 k 1 k F j = seq 1 + F k 2 k 1 k
438 382 418 437 3eqtr3d φ k seq 1 + k F 2 k 1 k = seq 1 + F k 2 k 1 k
439 4 5 9 10 11 12 14 17 3 30 74 76 438 climsuse φ seq 1 + k F 2 k 1 B
440 eqidd φ k F k = F k
441 11 12 440 15 isum φ k F k = seq 1 + F
442 climrel Rel
443 442 releldmi seq 1 + F B seq 1 + F dom
444 3 443 syl φ seq 1 + F dom
445 climdm seq 1 + F dom seq 1 + F seq 1 + F
446 444 445 sylib φ seq 1 + F seq 1 + F
447 climuni seq 1 + F seq 1 + F seq 1 + F B seq 1 + F = B
448 446 3 447 syl2anc φ seq 1 + F = B
449 442 a1i φ Rel
450 releldm Rel seq 1 + k F 2 k 1 B seq 1 + k F 2 k 1 dom
451 449 439 450 syl2anc φ seq 1 + k F 2 k 1 dom
452 climdm seq 1 + k F 2 k 1 dom seq 1 + k F 2 k 1 seq 1 + k F 2 k 1
453 451 452 sylib φ seq 1 + k F 2 k 1 seq 1 + k F 2 k 1
454 413 a1i φ k F 2 k 1 = j F 2 j 1
455 454 seqeq3d φ seq 1 + k F 2 k 1 = seq 1 + j F 2 j 1
456 455 fveq2d φ seq 1 + k F 2 k 1 = seq 1 + j F 2 j 1
457 453 456 breqtrd φ seq 1 + k F 2 k 1 seq 1 + j F 2 j 1
458 climuni seq 1 + k F 2 k 1 B seq 1 + k F 2 k 1 seq 1 + j F 2 j 1 B = seq 1 + j F 2 j 1
459 439 457 458 syl2anc φ B = seq 1 + j F 2 j 1
460 eqidd φ k j F 2 j 1 = j F 2 j 1
461 eqcom k = j j = k
462 eqcom F 2 k 1 = F 2 j 1 F 2 j 1 = F 2 k 1
463 412 461 462 3imtr3i j = k F 2 j 1 = F 2 k 1
464 463 adantl φ k j = k F 2 j 1 = F 2 k 1
465 1 adantr φ k F :
466 428 11 eleqtrrdi k 2 k 1
467 466 adantl φ k 2 k 1
468 465 467 ffvelrnd φ k F 2 k 1
469 460 464 416 468 fvmptd φ k j F 2 j 1 k = F 2 k 1
470 11 12 469 468 isum φ k F 2 k 1 = seq 1 + j F 2 j 1
471 459 470 eqtr4d φ B = k F 2 k 1
472 441 448 471 3eqtrd φ k F k = k F 2 k 1
473 439 472 jca φ seq 1 + k F 2 k 1 B k F k = k F 2 k 1