Metamath Proof Explorer


Theorem sumnul

Description: The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z = M
isumcl.2 φ M
isumcl.3 φ k Z F k = A
isumcl.4 φ k Z A
sumnul.5 φ ¬ seq M + F dom
Assertion sumnul φ k Z A =

Proof

Step Hyp Ref Expression
1 isumcl.1 Z = M
2 isumcl.2 φ M
3 isumcl.3 φ k Z F k = A
4 isumcl.4 φ k Z A
5 sumnul.5 φ ¬ seq M + F dom
6 1 2 3 4 isum φ k Z A = seq M + F
7 ndmfv ¬ seq M + F dom seq M + F =
8 5 7 syl φ seq M + F =
9 6 8 eqtrd φ k Z A =