Metamath Proof Explorer


Theorem sumpr

Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Hypotheses sumpr.1 k = A C = D
sumpr.2 k = B C = E
sumpr.3 φ D E
sumpr.4 φ A V B W
sumpr.5 φ A B
Assertion sumpr φ k A B C = D + E

Proof

Step Hyp Ref Expression
1 sumpr.1 k = A C = D
2 sumpr.2 k = B C = E
3 sumpr.3 φ D E
4 sumpr.4 φ A V B W
5 sumpr.5 φ A B
6 disjsn2 A B A B =
7 5 6 syl φ A B =
8 df-pr A B = A B
9 8 a1i φ A B = A B
10 prfi A B Fin
11 10 a1i φ A B Fin
12 1 eleq1d k = A C D
13 2 eleq1d k = B C E
14 12 13 ralprg A V B W k A B C D E
15 4 14 syl φ k A B C D E
16 3 15 mpbird φ k A B C
17 16 r19.21bi φ k A B C
18 7 9 11 17 fsumsplit φ k A B C = k A C + k B C
19 4 simpld φ A V
20 3 simpld φ D
21 1 sumsn A V D k A C = D
22 19 20 21 syl2anc φ k A C = D
23 4 simprd φ B W
24 3 simprd φ E
25 2 sumsn B W E k B C = E
26 23 24 25 syl2anc φ k B C = E
27 22 26 oveq12d φ k A C + k B C = D + E
28 18 27 eqtrd φ k A B C = D + E