Metamath Proof Explorer


Theorem sumrb

Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 9-Apr-2014)

Ref Expression
Hypotheses summo.1 F = k if k A B 0
summo.2 φ k A B
sumrb.4 φ M
sumrb.5 φ N
sumrb.6 φ A M
sumrb.7 φ A N
Assertion sumrb φ seq M + F C seq N + F C

Proof

Step Hyp Ref Expression
1 summo.1 F = k if k A B 0
2 summo.2 φ k A B
3 sumrb.4 φ M
4 sumrb.5 φ N
5 sumrb.6 φ A M
6 sumrb.7 φ A N
7 4 adantr φ N M N
8 seqex seq M + F V
9 climres N seq M + F V seq M + F N C seq M + F C
10 7 8 9 sylancl φ N M seq M + F N C seq M + F C
11 2 adantlr φ N M k A B
12 simpr φ N M N M
13 1 11 12 sumrblem φ N M A N seq M + F N = seq N + F
14 6 13 mpidan φ N M seq M + F N = seq N + F
15 14 breq1d φ N M seq M + F N C seq N + F C
16 10 15 bitr3d φ N M seq M + F C seq N + F C
17 2 adantlr φ M N k A B
18 simpr φ M N M N
19 1 17 18 sumrblem φ M N A M seq N + F M = seq M + F
20 5 19 mpidan φ M N seq N + F M = seq M + F
21 20 breq1d φ M N seq N + F M C seq M + F C
22 3 adantr φ M N M
23 seqex seq N + F V
24 climres M seq N + F V seq N + F M C seq N + F C
25 22 23 24 sylancl φ M N seq N + F M C seq N + F C
26 21 25 bitr3d φ M N seq M + F C seq N + F C
27 uztric M N N M M N
28 3 4 27 syl2anc φ N M M N
29 16 26 28 mpjaodan φ seq M + F C seq N + F C