Step |
Hyp |
Ref |
Expression |
1 |
|
summo.1 |
|
2 |
|
summo.2 |
|
3 |
|
sumrb.3 |
|
4 |
|
addid2 |
|
5 |
4
|
adantl |
|
6 |
|
0cnd |
|
7 |
3
|
adantr |
|
8 |
|
iftrue |
|
9 |
8
|
adantl |
|
10 |
9 2
|
eqeltrd |
|
11 |
10
|
ex |
|
12 |
|
iffalse |
|
13 |
|
0cn |
|
14 |
12 13
|
eqeltrdi |
|
15 |
11 14
|
pm2.61d1 |
|
16 |
15
|
adantr |
|
17 |
16 1
|
fmptd |
|
18 |
17
|
adantr |
|
19 |
|
eluzelz |
|
20 |
3 19
|
syl |
|
21 |
20
|
adantr |
|
22 |
18 21
|
ffvelrnd |
|
23 |
|
elfzelz |
|
24 |
23
|
adantl |
|
25 |
|
simplr |
|
26 |
20
|
zcnd |
|
27 |
26
|
ad2antrr |
|
28 |
|
ax-1cn |
|
29 |
|
npcan |
|
30 |
27 28 29
|
sylancl |
|
31 |
30
|
fveq2d |
|
32 |
25 31
|
sseqtrrd |
|
33 |
|
fznuz |
|
34 |
33
|
adantl |
|
35 |
32 34
|
ssneldd |
|
36 |
24 35
|
eldifd |
|
37 |
|
fveqeq2 |
|
38 |
|
eldifi |
|
39 |
|
eldifn |
|
40 |
39 12
|
syl |
|
41 |
40 13
|
eqeltrdi |
|
42 |
1
|
fvmpt2 |
|
43 |
38 41 42
|
syl2anc |
|
44 |
43 40
|
eqtrd |
|
45 |
37 44
|
vtoclga |
|
46 |
36 45
|
syl |
|
47 |
5 6 7 22 46
|
seqid |
|