Step |
Hyp |
Ref |
Expression |
1 |
|
sumsnf.1 |
|
2 |
|
sumsnf.2 |
|
3 |
|
nfcv |
|
4 |
|
nfcsb1v |
|
5 |
|
csbeq1a |
|
6 |
3 4 5
|
cbvsumi |
|
7 |
|
csbeq1 |
|
8 |
|
1nn |
|
9 |
8
|
a1i |
|
10 |
|
simpl |
|
11 |
|
f1osng |
|
12 |
8 10 11
|
sylancr |
|
13 |
|
1z |
|
14 |
|
fzsn |
|
15 |
|
f1oeq2 |
|
16 |
13 14 15
|
mp2b |
|
17 |
12 16
|
sylibr |
|
18 |
|
elsni |
|
19 |
18
|
adantl |
|
20 |
19
|
csbeq1d |
|
21 |
1
|
a1i |
|
22 |
21 2
|
csbiegf |
|
23 |
22
|
ad2antrr |
|
24 |
|
simplr |
|
25 |
23 24
|
eqeltrd |
|
26 |
20 25
|
eqeltrd |
|
27 |
22
|
ad2antrr |
|
28 |
|
elfz1eq |
|
29 |
28
|
fveq2d |
|
30 |
|
fvsng |
|
31 |
8 10 30
|
sylancr |
|
32 |
29 31
|
sylan9eqr |
|
33 |
32
|
csbeq1d |
|
34 |
28
|
fveq2d |
|
35 |
|
simpr |
|
36 |
|
fvsng |
|
37 |
8 35 36
|
sylancr |
|
38 |
34 37
|
sylan9eqr |
|
39 |
27 33 38
|
3eqtr4rd |
|
40 |
7 9 17 26 39
|
fsum |
|
41 |
6 40
|
eqtrid |
|
42 |
13 37
|
seq1i |
|
43 |
41 42
|
eqtrd |
|