Metamath Proof Explorer


Theorem sumsns

Description: A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014)

Ref Expression
Assertion sumsns M V M / k A k M A = M / k A

Proof

Step Hyp Ref Expression
1 nfcv _ n A
2 nfcsb1v _ k n / k A
3 csbeq1a k = n A = n / k A
4 1 2 3 cbvsumi k M A = n M n / k A
5 csbeq1 n = M n / k A = M / k A
6 5 sumsn M V M / k A n M n / k A = M / k A
7 4 6 eqtrid M V M / k A k M A = M / k A