Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Finite and infinite sums
sumsns
Next ⟩
fsumm1
Metamath Proof Explorer
Ascii
Unicode
Theorem
sumsns
Description:
A sum of a singleton is the term.
(Contributed by
Mario Carneiro
, 22-Apr-2014)
Ref
Expression
Assertion
sumsns
⊢
M
∈
V
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∑
k
∈
M
A
=
⦋
M
/
k
⦌
A
Proof
Step
Hyp
Ref
Expression
1
nfcv
⊢
Ⅎ
_
n
A
2
nfcsb1v
⊢
Ⅎ
_
k
⦋
n
/
k
⦌
A
3
csbeq1a
⊢
k
=
n
→
A
=
⦋
n
/
k
⦌
A
4
1
2
3
cbvsumi
⊢
∑
k
∈
M
A
=
∑
n
∈
M
⦋
n
/
k
⦌
A
5
csbeq1
⊢
n
=
M
→
⦋
n
/
k
⦌
A
=
⦋
M
/
k
⦌
A
6
5
sumsn
⊢
M
∈
V
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∑
n
∈
M
⦋
n
/
k
⦌
A
=
⦋
M
/
k
⦌
A
7
4
6
eqtrid
⊢
M
∈
V
∧
⦋
M
/
k
⦌
A
∈
ℂ
→
∑
k
∈
M
A
=
⦋
M
/
k
⦌
A