Metamath Proof Explorer


Theorem sumspansn

Description: The sum of two vectors belong to the span of one of them iff the other vector also belongs. (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)

Ref Expression
Assertion sumspansn A B A + B span A B span A

Proof

Step Hyp Ref Expression
1 spansnsh A span A S
2 1 adantr A A + B span A span A S
3 simpr A A + B span A A + B span A
4 spansnid A A span A
5 4 adantr A A + B span A A span A
6 shsubcl span A S A + B span A A span A A + B - A span A
7 2 3 5 6 syl3anc A A + B span A A + B - A span A
8 7 ex A A + B span A A + B - A span A
9 8 adantr A B A + B span A A + B - A span A
10 hvpncan2 A B A + B - A = B
11 10 eleq1d A B A + B - A span A B span A
12 9 11 sylibd A B A + B span A B span A
13 shaddcl span A S A span A B span A A + B span A
14 13 3expia span A S A span A B span A A + B span A
15 1 4 14 syl2anc A B span A A + B span A
16 15 adantr A B B span A A + B span A
17 12 16 impbid A B A + B span A B span A