Metamath Proof Explorer


Theorem sumsqeq0

Description: Two real numbers are equal to 0 iff their Euclidean norm is. (Contributed by NM, 29-Apr-2005) (Revised by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 28-May-2016)

Ref Expression
Assertion sumsqeq0 A B A = 0 B = 0 A 2 + B 2 = 0

Proof

Step Hyp Ref Expression
1 resqcl A A 2
2 sqge0 A 0 A 2
3 1 2 jca A A 2 0 A 2
4 resqcl B B 2
5 sqge0 B 0 B 2
6 4 5 jca B B 2 0 B 2
7 add20 A 2 0 A 2 B 2 0 B 2 A 2 + B 2 = 0 A 2 = 0 B 2 = 0
8 3 6 7 syl2an A B A 2 + B 2 = 0 A 2 = 0 B 2 = 0
9 recn A A
10 sqeq0 A A 2 = 0 A = 0
11 9 10 syl A A 2 = 0 A = 0
12 recn B B
13 sqeq0 B B 2 = 0 B = 0
14 12 13 syl B B 2 = 0 B = 0
15 11 14 bi2anan9 A B A 2 = 0 B 2 = 0 A = 0 B = 0
16 8 15 bitr2d A B A = 0 B = 0 A 2 + B 2 = 0