Step |
Hyp |
Ref |
Expression |
1 |
|
sumss.1 |
|
2 |
|
sumss.2 |
|
3 |
|
sumss.3 |
|
4 |
|
sumss.4 |
|
5 |
|
eqid |
|
6 |
|
simpr |
|
7 |
1 4
|
sstrd |
|
8 |
7
|
adantr |
|
9 |
|
nfcv |
|
10 |
|
nffvmpt1 |
|
11 |
|
nfv |
|
12 |
|
nffvmpt1 |
|
13 |
|
nfcv |
|
14 |
11 12 13
|
nfif |
|
15 |
10 14
|
nfeq |
|
16 |
|
fveq2 |
|
17 |
|
eleq1w |
|
18 |
|
fveq2 |
|
19 |
17 18
|
ifbieq1d |
|
20 |
16 19
|
eqeq12d |
|
21 |
|
eqid |
|
22 |
21
|
fvmpt2i |
|
23 |
|
iftrue |
|
24 |
23
|
fveq2d |
|
25 |
22 24
|
sylan9eq |
|
26 |
|
iftrue |
|
27 |
|
eqid |
|
28 |
27
|
fvmpt2i |
|
29 |
26 28
|
eqtrd |
|
30 |
29
|
adantl |
|
31 |
25 30
|
eqtr4d |
|
32 |
|
iffalse |
|
33 |
32
|
fveq2d |
|
34 |
|
0z |
|
35 |
|
fvi |
|
36 |
34 35
|
ax-mp |
|
37 |
33 36
|
eqtrdi |
|
38 |
22 37
|
sylan9eq |
|
39 |
|
iffalse |
|
40 |
39
|
adantl |
|
41 |
38 40
|
eqtr4d |
|
42 |
31 41
|
pm2.61dan |
|
43 |
9 15 20 42
|
vtoclgaf |
|
44 |
43
|
adantl |
|
45 |
2
|
fmpttd |
|
46 |
45
|
adantr |
|
47 |
46
|
ffvelrnda |
|
48 |
5 6 8 44 47
|
zsum |
|
49 |
4
|
adantr |
|
50 |
|
nfv |
|
51 |
|
nfv |
|
52 |
|
nffvmpt1 |
|
53 |
51 52 13
|
nfif |
|
54 |
10 53
|
nfeq |
|
55 |
50 54
|
nfim |
|
56 |
|
eleq1w |
|
57 |
|
fveq2 |
|
58 |
56 57
|
ifbieq1d |
|
59 |
16 58
|
eqeq12d |
|
60 |
59
|
imbi2d |
|
61 |
25
|
adantll |
|
62 |
1
|
adantr |
|
63 |
62
|
sselda |
|
64 |
|
iftrue |
|
65 |
|
eqid |
|
66 |
65
|
fvmpt2i |
|
67 |
64 66
|
eqtrd |
|
68 |
63 67
|
syl |
|
69 |
61 68
|
eqtr4d |
|
70 |
38
|
adantll |
|
71 |
67
|
ad2antrl |
|
72 |
|
eldif |
|
73 |
3
|
fveq2d |
|
74 |
|
0cn |
|
75 |
|
fvi |
|
76 |
74 75
|
ax-mp |
|
77 |
73 76
|
eqtrdi |
|
78 |
72 77
|
sylan2br |
|
79 |
71 78
|
eqtrd |
|
80 |
79
|
expr |
|
81 |
|
iffalse |
|
82 |
81
|
adantl |
|
83 |
82
|
a1d |
|
84 |
80 83
|
pm2.61dan |
|
85 |
84
|
adantr |
|
86 |
85
|
imp |
|
87 |
70 86
|
eqtr4d |
|
88 |
69 87
|
pm2.61dan |
|
89 |
88
|
expcom |
|
90 |
9 55 60 89
|
vtoclgaf |
|
91 |
90
|
impcom |
|
92 |
91
|
adantlr |
|
93 |
2
|
ex |
|
94 |
93
|
adantr |
|
95 |
3 74
|
eqeltrdi |
|
96 |
72 95
|
sylan2br |
|
97 |
96
|
expr |
|
98 |
94 97
|
pm2.61d |
|
99 |
98
|
fmpttd |
|
100 |
99
|
adantr |
|
101 |
100
|
ffvelrnda |
|
102 |
5 6 49 92 101
|
zsum |
|
103 |
48 102
|
eqtr4d |
|
104 |
|
sumfc |
|
105 |
|
sumfc |
|
106 |
103 104 105
|
3eqtr3g |
|
107 |
1
|
adantr |
|
108 |
|
uzf |
|
109 |
108
|
fdmi |
|
110 |
109
|
eleq2i |
|
111 |
|
ndmfv |
|
112 |
110 111
|
sylnbir |
|
113 |
112
|
sseq2d |
|
114 |
4 113
|
syl5ib |
|
115 |
114
|
impcom |
|
116 |
107 115
|
sstrd |
|
117 |
|
ss0 |
|
118 |
116 117
|
syl |
|
119 |
|
ss0 |
|
120 |
115 119
|
syl |
|
121 |
118 120
|
eqtr4d |
|
122 |
121
|
sumeq1d |
|
123 |
106 122
|
pm2.61dan |
|