Metamath Proof Explorer


Theorem sumss2

Description: Change the index set of a sum by adding zeroes. (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 20-Apr-2014)

Ref Expression
Assertion sumss2 A B k A C B M B Fin k A C = k B if k A C 0

Proof

Step Hyp Ref Expression
1 simpll A B k A C B M A B
2 iftrue m A if m A m / k C 0 = m / k C
3 2 adantl k A C m A if m A m / k C 0 = m / k C
4 nfcsb1v _ k m / k C
5 4 nfel1 k m / k C
6 csbeq1a k = m C = m / k C
7 6 eleq1d k = m C m / k C
8 5 7 rspc m A k A C m / k C
9 8 impcom k A C m A m / k C
10 3 9 eqeltrd k A C m A if m A m / k C 0
11 10 ad4ant24 A B k A C B M m A if m A m / k C 0
12 eldifn m B A ¬ m A
13 12 iffalsed m B A if m A m / k C 0 = 0
14 13 adantl A B k A C B M m B A if m A m / k C 0 = 0
15 simpr A B k A C B M B M
16 1 11 14 15 sumss A B k A C B M m A if m A m / k C 0 = m B if m A m / k C 0
17 simpll A B k A C B Fin A B
18 10 ad4ant24 A B k A C B Fin m A if m A m / k C 0
19 13 adantl A B k A C B Fin m B A if m A m / k C 0 = 0
20 simpr A B k A C B Fin B Fin
21 17 18 19 20 fsumss A B k A C B Fin m A if m A m / k C 0 = m B if m A m / k C 0
22 16 21 jaodan A B k A C B M B Fin m A if m A m / k C 0 = m B if m A m / k C 0
23 iftrue k A if k A C 0 = C
24 23 sumeq2i k A if k A C 0 = k A C
25 nfcv _ m if k A C 0
26 nfv k m A
27 nfcv _ k 0
28 26 4 27 nfif _ k if m A m / k C 0
29 eleq1w k = m k A m A
30 29 6 ifbieq1d k = m if k A C 0 = if m A m / k C 0
31 25 28 30 cbvsumi k A if k A C 0 = m A if m A m / k C 0
32 24 31 eqtr3i k A C = m A if m A m / k C 0
33 25 28 30 cbvsumi k B if k A C 0 = m B if m A m / k C 0
34 22 32 33 3eqtr4g A B k A C B M B Fin k A C = k B if k A C 0