Metamath Proof Explorer


Theorem sumtp

Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020)

Ref Expression
Hypotheses sumtp.e k = A D = E
sumtp.f k = B D = F
sumtp.g k = C D = G
sumtp.c φ E F G
sumtp.v φ A V B W C X
sumtp.1 φ A B
sumtp.2 φ A C
sumtp.3 φ B C
Assertion sumtp φ k A B C D = E + F + G

Proof

Step Hyp Ref Expression
1 sumtp.e k = A D = E
2 sumtp.f k = B D = F
3 sumtp.g k = C D = G
4 sumtp.c φ E F G
5 sumtp.v φ A V B W C X
6 sumtp.1 φ A B
7 sumtp.2 φ A C
8 sumtp.3 φ B C
9 7 necomd φ C A
10 8 necomd φ C B
11 9 10 nelprd φ ¬ C A B
12 disjsn A B C = ¬ C A B
13 11 12 sylibr φ A B C =
14 df-tp A B C = A B C
15 14 a1i φ A B C = A B C
16 tpfi A B C Fin
17 16 a1i φ A B C Fin
18 1 eleq1d k = A D E
19 2 eleq1d k = B D F
20 3 eleq1d k = C D G
21 18 19 20 raltpg A V B W C X k A B C D E F G
22 5 21 syl φ k A B C D E F G
23 4 22 mpbird φ k A B C D
24 23 r19.21bi φ k A B C D
25 13 15 17 24 fsumsplit φ k A B C D = k A B D + k C D
26 3simpa E F G E F
27 4 26 syl φ E F
28 3simpa A V B W C X A V B W
29 5 28 syl φ A V B W
30 1 2 27 29 6 sumpr φ k A B D = E + F
31 5 simp3d φ C X
32 4 simp3d φ G
33 3 sumsn C X G k C D = G
34 31 32 33 syl2anc φ k C D = G
35 30 34 oveq12d φ k A B D + k C D = E + F + G
36 25 35 eqtrd φ k A B C D = E + F + G