| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumtp.e |
|
| 2 |
|
sumtp.f |
|
| 3 |
|
sumtp.g |
|
| 4 |
|
sumtp.c |
|
| 5 |
|
sumtp.v |
|
| 6 |
|
sumtp.1 |
|
| 7 |
|
sumtp.2 |
|
| 8 |
|
sumtp.3 |
|
| 9 |
7
|
necomd |
|
| 10 |
8
|
necomd |
|
| 11 |
9 10
|
nelprd |
|
| 12 |
|
disjsn |
|
| 13 |
11 12
|
sylibr |
|
| 14 |
|
df-tp |
|
| 15 |
14
|
a1i |
|
| 16 |
|
tpfi |
|
| 17 |
16
|
a1i |
|
| 18 |
1
|
eleq1d |
|
| 19 |
2
|
eleq1d |
|
| 20 |
3
|
eleq1d |
|
| 21 |
18 19 20
|
raltpg |
|
| 22 |
5 21
|
syl |
|
| 23 |
4 22
|
mpbird |
|
| 24 |
23
|
r19.21bi |
|
| 25 |
13 15 17 24
|
fsumsplit |
|
| 26 |
|
3simpa |
|
| 27 |
4 26
|
syl |
|
| 28 |
|
3simpa |
|
| 29 |
5 28
|
syl |
|
| 30 |
1 2 27 29 6
|
sumpr |
|
| 31 |
5
|
simp3d |
|
| 32 |
4
|
simp3d |
|
| 33 |
3
|
sumsn |
|
| 34 |
31 32 33
|
syl2anc |
|
| 35 |
30 34
|
oveq12d |
|
| 36 |
25 35
|
eqtrd |
|