Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
simpr |
|
3 |
|
simpl |
|
4 |
|
c0ex |
|
5 |
4
|
fvconst2 |
|
6 |
|
ifid |
|
7 |
5 6
|
eqtr4di |
|
8 |
7
|
adantl |
|
9 |
|
0cnd |
|
10 |
1 2 3 8 9
|
zsum |
|
11 |
|
fclim |
|
12 |
|
ffun |
|
13 |
11 12
|
ax-mp |
|
14 |
|
serclim0 |
|
15 |
14
|
adantl |
|
16 |
|
funbrfv |
|
17 |
13 15 16
|
mpsyl |
|
18 |
10 17
|
eqtrd |
|
19 |
|
uzf |
|
20 |
19
|
fdmi |
|
21 |
20
|
eleq2i |
|
22 |
|
ndmfv |
|
23 |
21 22
|
sylnbir |
|
24 |
23
|
sseq2d |
|
25 |
24
|
biimpac |
|
26 |
|
ss0 |
|
27 |
|
sumeq1 |
|
28 |
|
sum0 |
|
29 |
27 28
|
eqtrdi |
|
30 |
25 26 29
|
3syl |
|
31 |
18 30
|
pm2.61dan |
|
32 |
|
fz1f1o |
|
33 |
|
eqidd |
|
34 |
|
simpl |
|
35 |
|
simpr |
|
36 |
|
0cnd |
|
37 |
|
elfznn |
|
38 |
4
|
fvconst2 |
|
39 |
37 38
|
syl |
|
40 |
39
|
adantl |
|
41 |
33 34 35 36 40
|
fsum |
|
42 |
|
nnuz |
|
43 |
42
|
ser0 |
|
44 |
43
|
adantr |
|
45 |
41 44
|
eqtrd |
|
46 |
45
|
ex |
|
47 |
46
|
exlimdv |
|
48 |
47
|
imp |
|
49 |
29 48
|
jaoi |
|
50 |
32 49
|
syl |
|
51 |
31 50
|
jaoi |
|