Metamath Proof Explorer


Theorem sup00

Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion sup00 sup B R =

Proof

Step Hyp Ref Expression
1 df-sup sup B R = x | y B ¬ x R y y y R x z B y R z
2 rab0 x | y B ¬ x R y y y R x z B y R z =
3 2 unieqi x | y B ¬ x R y y y R x z B y R z =
4 uni0 =
5 1 3 4 3eqtri sup B R =