Metamath Proof Explorer


Theorem sup0riota

Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion sup0riota ROrAsupAR=ιxA|yA¬yRx

Proof

Step Hyp Ref Expression
1 id ROrAROrA
2 1 supval2 ROrAsupAR=ιxA|y¬xRyyAyRxzyRz
3 ral0 y¬xRy
4 3 biantrur yAyRxzyRzy¬xRyyAyRxzyRz
5 rex0 ¬zyRz
6 imnot ¬zyRzyRxzyRz¬yRx
7 5 6 ax-mp yRxzyRz¬yRx
8 7 ralbii yAyRxzyRzyA¬yRx
9 4 8 bitr3i y¬xRyyAyRxzyRzyA¬yRx
10 9 a1i ROrAy¬xRyyAyRxzyRzyA¬yRx
11 10 riotabidv ROrAιxA|y¬xRyyAyRxzyRz=ιxA|yA¬yRx
12 2 11 eqtrd ROrAsupAR=ιxA|yA¬yRx