Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Completeness Axiom and Suprema
sup3ii
Next ⟩
suprclii
Metamath Proof Explorer
Ascii
Unicode
Theorem
sup3ii
Description:
A version of the completeness axiom for reals.
(Contributed by
NM
, 23-Aug-1999)
Ref
Expression
Hypothesis
sup3i.1
⊢
A
⊆
ℝ
∧
A
≠
∅
∧
∃
x
∈
ℝ
∀
y
∈
A
y
≤
x
Assertion
sup3ii
⊢
∃
x
∈
ℝ
∀
y
∈
A
¬
x
<
y
∧
∀
y
∈
ℝ
y
<
x
→
∃
z
∈
A
y
<
z
Proof
Step
Hyp
Ref
Expression
1
sup3i.1
⊢
A
⊆
ℝ
∧
A
≠
∅
∧
∃
x
∈
ℝ
∀
y
∈
A
y
≤
x
2
sup3
⊢
A
⊆
ℝ
∧
A
≠
∅
∧
∃
x
∈
ℝ
∀
y
∈
A
y
≤
x
→
∃
x
∈
ℝ
∀
y
∈
A
¬
x
<
y
∧
∀
y
∈
ℝ
y
<
x
→
∃
z
∈
A
y
<
z
3
1
2
ax-mp
⊢
∃
x
∈
ℝ
∀
y
∈
A
¬
x
<
y
∧
∀
y
∈
ℝ
y
<
x
→
∃
z
∈
A
y
<
z