Metamath Proof Explorer


Theorem supadd

Description: The supremum function distributes over addition in a sense similar to that in supmul . (Contributed by Brendan Leahy, 26-Sep-2017)

Ref Expression
Hypotheses supadd.a1 φ A
supadd.a2 φ A
supadd.a3 φ x y A y x
supadd.b1 φ B
supadd.b2 φ B
supadd.b3 φ x y B y x
supadd.c C = z | v A b B z = v + b
Assertion supadd φ sup A < + sup B < = sup C <

Proof

Step Hyp Ref Expression
1 supadd.a1 φ A
2 supadd.a2 φ A
3 supadd.a3 φ x y A y x
4 supadd.b1 φ B
5 supadd.b2 φ B
6 supadd.b3 φ x y B y x
7 supadd.c C = z | v A b B z = v + b
8 4 5 6 suprcld φ sup B <
9 eqid z | a A z = a + sup B < = z | a A z = a + sup B <
10 1 2 3 8 9 supaddc φ sup A < + sup B < = sup z | a A z = a + sup B < <
11 1 sselda φ a A a
12 11 recnd φ a A a
13 8 adantr φ a A sup B <
14 13 recnd φ a A sup B <
15 12 14 addcomd φ a A a + sup B < = sup B < + a
16 15 eqeq2d φ a A z = a + sup B < z = sup B < + a
17 16 rexbidva φ a A z = a + sup B < a A z = sup B < + a
18 17 abbidv φ z | a A z = a + sup B < = z | a A z = sup B < + a
19 18 supeq1d φ sup z | a A z = a + sup B < < = sup z | a A z = sup B < + a <
20 10 19 eqtrd φ sup A < + sup B < = sup z | a A z = sup B < + a <
21 vex w V
22 eqeq1 z = w z = sup B < + a w = sup B < + a
23 22 rexbidv z = w a A z = sup B < + a a A w = sup B < + a
24 21 23 elab w z | a A z = sup B < + a a A w = sup B < + a
25 4 adantr φ a A B
26 5 adantr φ a A B
27 6 adantr φ a A x y B y x
28 eqid z | b B z = b + a = z | b B z = b + a
29 25 26 27 11 28 supaddc φ a A sup B < + a = sup z | b B z = b + a <
30 4 sselda φ b B b
31 30 adantlr φ a A b B b
32 31 recnd φ a A b B b
33 11 adantr φ a A b B a
34 33 recnd φ a A b B a
35 32 34 addcomd φ a A b B b + a = a + b
36 35 eqeq2d φ a A b B z = b + a z = a + b
37 36 rexbidva φ a A b B z = b + a b B z = a + b
38 37 abbidv φ a A z | b B z = b + a = z | b B z = a + b
39 38 supeq1d φ a A sup z | b B z = b + a < = sup z | b B z = a + b <
40 29 39 eqtrd φ a A sup B < + a = sup z | b B z = a + b <
41 eqeq1 z = w z = a + b w = a + b
42 41 rexbidv z = w b B z = a + b b B w = a + b
43 21 42 elab w z | b B z = a + b b B w = a + b
44 rspe a A b B w = a + b a A b B w = a + b
45 oveq1 v = a v + b = a + b
46 45 eqeq2d v = a z = v + b z = a + b
47 46 rexbidv v = a b B z = v + b b B z = a + b
48 47 cbvrexvw v A b B z = v + b a A b B z = a + b
49 41 2rexbidv z = w a A b B z = a + b a A b B w = a + b
50 48 49 syl5bb z = w v A b B z = v + b a A b B w = a + b
51 21 50 7 elab2 w C a A b B w = a + b
52 44 51 sylibr a A b B w = a + b w C
53 52 ex a A b B w = a + b w C
54 1 sseld φ a A a
55 4 sseld φ b B b
56 54 55 anim12d φ a A b B a b
57 readdcl a b a + b
58 56 57 syl6 φ a A b B a + b
59 eleq1a a + b w = a + b w
60 58 59 syl6 φ a A b B w = a + b w
61 60 rexlimdvv φ a A b B w = a + b w
62 51 61 syl5bi φ w C w
63 62 ssrdv φ C
64 ovex a + b V
65 64 isseti w w = a + b
66 65 rgenw b B w w = a + b
67 r19.2z B b B w w = a + b b B w w = a + b
68 5 66 67 sylancl φ b B w w = a + b
69 rexcom4 b B w w = a + b w b B w = a + b
70 68 69 sylib φ w b B w = a + b
71 70 ralrimivw φ a A w b B w = a + b
72 r19.2z A a A w b B w = a + b a A w b B w = a + b
73 2 71 72 syl2anc φ a A w b B w = a + b
74 rexcom4 a A w b B w = a + b w a A b B w = a + b
75 73 74 sylib φ w a A b B w = a + b
76 n0 C w w C
77 51 exbii w w C w a A b B w = a + b
78 76 77 bitri C w a A b B w = a + b
79 75 78 sylibr φ C
80 1 2 3 suprcld φ sup A <
81 80 8 readdcld φ sup A < + sup B <
82 11 adantrr φ a A b B a
83 30 adantrl φ a A b B b
84 80 adantr φ a A b B sup A <
85 8 adantr φ a A b B sup B <
86 1 2 3 3jca φ A A x y A y x
87 suprub A A x y A y x a A a sup A <
88 86 87 sylan φ a A a sup A <
89 88 adantrr φ a A b B a sup A <
90 4 5 6 3jca φ B B x y B y x
91 suprub B B x y B y x b B b sup B <
92 90 91 sylan φ b B b sup B <
93 92 adantrl φ a A b B b sup B <
94 82 83 84 85 89 93 le2addd φ a A b B a + b sup A < + sup B <
95 94 ex φ a A b B a + b sup A < + sup B <
96 breq1 w = a + b w sup A < + sup B < a + b sup A < + sup B <
97 96 biimprcd a + b sup A < + sup B < w = a + b w sup A < + sup B <
98 95 97 syl6 φ a A b B w = a + b w sup A < + sup B <
99 98 rexlimdvv φ a A b B w = a + b w sup A < + sup B <
100 51 99 syl5bi φ w C w sup A < + sup B <
101 100 ralrimiv φ w C w sup A < + sup B <
102 brralrspcev sup A < + sup B < w C w sup A < + sup B < x w C w x
103 81 101 102 syl2anc φ x w C w x
104 suprub C C x w C w x w C w sup C <
105 104 ex C C x w C w x w C w sup C <
106 63 79 103 105 syl3anc φ w C w sup C <
107 53 106 sylan9r φ a A b B w = a + b w sup C <
108 43 107 syl5bi φ a A w z | b B z = a + b w sup C <
109 108 ralrimiv φ a A w z | b B z = a + b w sup C <
110 33 31 readdcld φ a A b B a + b
111 eleq1a a + b z = a + b z
112 110 111 syl φ a A b B z = a + b z
113 112 rexlimdva φ a A b B z = a + b z
114 113 abssdv φ a A z | b B z = a + b
115 64 isseti z z = a + b
116 115 rgenw b B z z = a + b
117 r19.2z B b B z z = a + b b B z z = a + b
118 5 116 117 sylancl φ b B z z = a + b
119 rexcom4 b B z z = a + b z b B z = a + b
120 118 119 sylib φ z b B z = a + b
121 abn0 z | b B z = a + b z b B z = a + b
122 120 121 sylibr φ z | b B z = a + b
123 122 adantr φ a A z | b B z = a + b
124 63 79 103 suprcld φ sup C <
125 124 adantr φ a A sup C <
126 brralrspcev sup C < w z | b B z = a + b w sup C < x w z | b B z = a + b w x
127 125 109 126 syl2anc φ a A x w z | b B z = a + b w x
128 suprleub z | b B z = a + b z | b B z = a + b x w z | b B z = a + b w x sup C < sup z | b B z = a + b < sup C < w z | b B z = a + b w sup C <
129 114 123 127 125 128 syl31anc φ a A sup z | b B z = a + b < sup C < w z | b B z = a + b w sup C <
130 109 129 mpbird φ a A sup z | b B z = a + b < sup C <
131 40 130 eqbrtrd φ a A sup B < + a sup C <
132 breq1 w = sup B < + a w sup C < sup B < + a sup C <
133 131 132 syl5ibrcom φ a A w = sup B < + a w sup C <
134 133 rexlimdva φ a A w = sup B < + a w sup C <
135 24 134 syl5bi φ w z | a A z = sup B < + a w sup C <
136 135 ralrimiv φ w z | a A z = sup B < + a w sup C <
137 13 11 readdcld φ a A sup B < + a
138 eleq1a sup B < + a z = sup B < + a z
139 137 138 syl φ a A z = sup B < + a z
140 139 rexlimdva φ a A z = sup B < + a z
141 140 abssdv φ z | a A z = sup B < + a
142 ovex sup B < + a V
143 142 isseti z z = sup B < + a
144 143 rgenw a A z z = sup B < + a
145 r19.2z A a A z z = sup B < + a a A z z = sup B < + a
146 2 144 145 sylancl φ a A z z = sup B < + a
147 rexcom4 a A z z = sup B < + a z a A z = sup B < + a
148 146 147 sylib φ z a A z = sup B < + a
149 abn0 z | a A z = sup B < + a z a A z = sup B < + a
150 148 149 sylibr φ z | a A z = sup B < + a
151 brralrspcev sup C < w z | a A z = sup B < + a w sup C < x w z | a A z = sup B < + a w x
152 124 136 151 syl2anc φ x w z | a A z = sup B < + a w x
153 suprleub z | a A z = sup B < + a z | a A z = sup B < + a x w z | a A z = sup B < + a w x sup C < sup z | a A z = sup B < + a < sup C < w z | a A z = sup B < + a w sup C <
154 141 150 152 124 153 syl31anc φ sup z | a A z = sup B < + a < sup C < w z | a A z = sup B < + a w sup C <
155 136 154 mpbird φ sup z | a A z = sup B < + a < sup C <
156 20 155 eqbrtrd φ sup A < + sup B < sup C <
157 suprleub C C x w C w x sup A < + sup B < sup C < sup A < + sup B < w C w sup A < + sup B <
158 63 79 103 81 157 syl31anc φ sup C < sup A < + sup B < w C w sup A < + sup B <
159 101 158 mpbird φ sup C < sup A < + sup B <
160 81 124 letri3d φ sup A < + sup B < = sup C < sup A < + sup B < sup C < sup C < sup A < + sup B <
161 156 159 160 mpbir2and φ sup A < + sup B < = sup C <