| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supadd.a1 |
|
| 2 |
|
supadd.a2 |
|
| 3 |
|
supadd.a3 |
|
| 4 |
|
supaddc.b |
|
| 5 |
|
supaddc.c |
|
| 6 |
|
vex |
|
| 7 |
|
oveq1 |
|
| 8 |
7
|
eqeq2d |
|
| 9 |
8
|
cbvrexvw |
|
| 10 |
|
eqeq1 |
|
| 11 |
10
|
rexbidv |
|
| 12 |
9 11
|
bitrid |
|
| 13 |
6 12 5
|
elab2 |
|
| 14 |
1
|
sselda |
|
| 15 |
1 2 3
|
suprcld |
|
| 16 |
15
|
adantr |
|
| 17 |
4
|
adantr |
|
| 18 |
1 2 3
|
3jca |
|
| 19 |
|
suprub |
|
| 20 |
18 19
|
sylan |
|
| 21 |
14 16 17 20
|
leadd1dd |
|
| 22 |
|
breq1 |
|
| 23 |
21 22
|
syl5ibrcom |
|
| 24 |
23
|
rexlimdva |
|
| 25 |
13 24
|
biimtrid |
|
| 26 |
25
|
ralrimiv |
|
| 27 |
14 17
|
readdcld |
|
| 28 |
|
eleq1a |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
rexlimdva |
|
| 31 |
13 30
|
biimtrid |
|
| 32 |
31
|
ssrdv |
|
| 33 |
|
ovex |
|
| 34 |
33
|
isseti |
|
| 35 |
34
|
rgenw |
|
| 36 |
|
r19.2z |
|
| 37 |
2 35 36
|
sylancl |
|
| 38 |
13
|
exbii |
|
| 39 |
|
n0 |
|
| 40 |
|
rexcom4 |
|
| 41 |
38 39 40
|
3bitr4i |
|
| 42 |
37 41
|
sylibr |
|
| 43 |
15 4
|
readdcld |
|
| 44 |
|
brralrspcev |
|
| 45 |
43 26 44
|
syl2anc |
|
| 46 |
|
suprleub |
|
| 47 |
32 42 45 43 46
|
syl31anc |
|
| 48 |
26 47
|
mpbird |
|
| 49 |
32 42 45
|
suprcld |
|
| 50 |
49 4 15
|
ltsubaddd |
|
| 51 |
50
|
biimpar |
|
| 52 |
49 4
|
resubcld |
|
| 53 |
|
suprlub |
|
| 54 |
1 2 3 52 53
|
syl31anc |
|
| 55 |
54
|
adantr |
|
| 56 |
51 55
|
mpbid |
|
| 57 |
27
|
adantlr |
|
| 58 |
49
|
ad2antrr |
|
| 59 |
|
rspe |
|
| 60 |
59 13
|
sylibr |
|
| 61 |
60
|
adantl |
|
| 62 |
|
simplrr |
|
| 63 |
32 42 45
|
3jca |
|
| 64 |
|
suprub |
|
| 65 |
63 64
|
sylan |
|
| 66 |
65
|
adantlr |
|
| 67 |
62 66
|
eqbrtrrd |
|
| 68 |
61 67
|
mpdan |
|
| 69 |
68
|
expr |
|
| 70 |
69
|
exlimdv |
|
| 71 |
34 70
|
mpi |
|
| 72 |
71
|
adantlr |
|
| 73 |
57 58 72
|
lensymd |
|
| 74 |
4
|
ad2antrr |
|
| 75 |
14
|
adantlr |
|
| 76 |
58 74 75
|
ltsubaddd |
|
| 77 |
73 76
|
mtbird |
|
| 78 |
77
|
nrexdv |
|
| 79 |
56 78
|
pm2.65da |
|
| 80 |
49 43
|
eqleltd |
|
| 81 |
48 79 80
|
mpbir2and |
|
| 82 |
81
|
eqcomd |
|