Metamath Proof Explorer


Theorem supcnvlimsupmpt

Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supcnvlimsupmpt.j j φ
supcnvlimsupmpt.m φ M
supcnvlimsupmpt.z Z = M
supcnvlimsupmpt.b φ j Z B
supcnvlimsupmpt.r φ lim sup j Z B
Assertion supcnvlimsupmpt φ k Z sup ran j k B * < lim sup j Z B

Proof

Step Hyp Ref Expression
1 supcnvlimsupmpt.j j φ
2 supcnvlimsupmpt.m φ M
3 supcnvlimsupmpt.z Z = M
4 supcnvlimsupmpt.b φ j Z B
5 supcnvlimsupmpt.r φ lim sup j Z B
6 fveq2 k = n k = n
7 6 mpteq1d k = n j k B = j n B
8 7 rneqd k = n ran j k B = ran j n B
9 8 supeq1d k = n sup ran j k B * < = sup ran j n B * <
10 9 cbvmptv k Z sup ran j k B * < = n Z sup ran j n B * <
11 3 uzssd3 n Z n Z
12 11 adantl φ n Z n Z
13 12 resmptd φ n Z j Z B n = j n B
14 13 eqcomd φ n Z j n B = j Z B n
15 14 rneqd φ n Z ran j n B = ran j Z B n
16 15 supeq1d φ n Z sup ran j n B * < = sup ran j Z B n * <
17 16 mpteq2dva φ n Z sup ran j n B * < = n Z sup ran j Z B n * <
18 10 17 syl5eq φ k Z sup ran j k B * < = n Z sup ran j Z B n * <
19 1 4 fmptd2f φ j Z B : Z
20 2 3 19 5 supcnvlimsup φ n Z sup ran j Z B n * < lim sup j Z B
21 18 20 eqbrtrd φ k Z sup ran j k B * < lim sup j Z B