Metamath Proof Explorer


Theorem supcvg

Description: Extract a sequence f in X such that the image of the points in the bounded set A converges to the supremum S of the set. Similar to Equation 4 of Kreyszig p. 144. The proof uses countable choice ax-cc . (Contributed by Mario Carneiro, 15-Feb-2013) (Proof shortened by Mario Carneiro, 26-Apr-2014)

Ref Expression
Hypotheses supcvg.1 X V
supcvg.2 S = sup A <
supcvg.3 R = n S 1 n
supcvg.4 φ X
supcvg.5 φ F : X onto A
supcvg.6 φ A
supcvg.7 φ x y A y x
Assertion supcvg φ f f : X F f S

Proof

Step Hyp Ref Expression
1 supcvg.1 X V
2 supcvg.2 S = sup A <
3 supcvg.3 R = n S 1 n
4 supcvg.4 φ X
5 supcvg.5 φ F : X onto A
6 supcvg.6 φ A
7 supcvg.7 φ x y A y x
8 oveq2 n = k 1 n = 1 k
9 8 oveq2d n = k S 1 n = S 1 k
10 ovex S 1 k V
11 9 3 10 fvmpt k R k = S 1 k
12 11 adantl φ k R k = S 1 k
13 fof F : X onto A F : X A
14 5 13 syl φ F : X A
15 feq3 A = F : X A F : X
16 14 15 syl5ibcom φ A = F : X
17 f00 F : X F = X =
18 17 simprbi F : X X =
19 16 18 syl6 φ A = X =
20 19 necon3d φ X A
21 4 20 mpd φ A
22 6 21 7 suprcld φ sup A <
23 2 22 eqeltrid φ S
24 nnrp k k +
25 24 rpreccld k 1 k +
26 ltsubrp S 1 k + S 1 k < S
27 23 25 26 syl2an φ k S 1 k < S
28 12 27 eqbrtrd φ k R k < S
29 28 2 breqtrdi φ k R k < sup A <
30 6 21 7 3jca φ A A x y A y x
31 nnrecre n 1 n
32 resubcl S 1 n S 1 n
33 23 31 32 syl2an φ n S 1 n
34 33 3 fmptd φ R :
35 34 ffvelrnda φ k R k
36 suprlub A A x y A y x R k R k < sup A < z A R k < z
37 30 35 36 syl2an2r φ k R k < sup A < z A R k < z
38 29 37 mpbid φ k z A R k < z
39 6 adantr φ k A
40 39 sselda φ k z A z
41 ltle R k z R k < z R k z
42 35 40 41 syl2an2r φ k z A R k < z R k z
43 42 reximdva φ k z A R k < z z A R k z
44 38 43 mpd φ k z A R k z
45 forn F : X onto A ran F = A
46 5 45 syl φ ran F = A
47 46 rexeqdv φ z ran F R k z z A R k z
48 ffn F : X A F Fn X
49 breq2 z = F x R k z R k F x
50 49 rexrn F Fn X z ran F R k z x X R k F x
51 14 48 50 3syl φ z ran F R k z x X R k F x
52 47 51 bitr3d φ z A R k z x X R k F x
53 52 adantr φ k z A R k z x X R k F x
54 44 53 mpbid φ k x X R k F x
55 54 ralrimiva φ k x X R k F x
56 nnenom ω
57 fveq2 x = f k F x = F f k
58 57 breq2d x = f k R k F x R k F f k
59 1 56 58 axcc4 k x X R k F x f f : X k R k F f k
60 55 59 syl φ f f : X k R k F f k
61 nnuz = 1
62 1zzd φ f : X k R k F f k 1
63 1zzd φ 1
64 23 recnd φ S
65 1z 1
66 61 eqimss2i 1
67 nnex V
68 66 67 climconst2 S 1 × S S
69 64 65 68 sylancl φ × S S
70 67 mptex n S 1 n V
71 3 70 eqeltri R V
72 71 a1i φ R V
73 ax-1cn 1
74 divcnv 1 n 1 n 0
75 73 74 mp1i φ n 1 n 0
76 fvconst2g S k × S k = S
77 23 76 sylan φ k × S k = S
78 64 adantr φ k S
79 77 78 eqeltrd φ k × S k
80 eqid n 1 n = n 1 n
81 ovex 1 k V
82 8 80 81 fvmpt k n 1 n k = 1 k
83 82 adantl φ k n 1 n k = 1 k
84 nnrecre k 1 k
85 84 recnd k 1 k
86 85 adantl φ k 1 k
87 83 86 eqeltrd φ k n 1 n k
88 77 83 oveq12d φ k × S k n 1 n k = S 1 k
89 12 88 eqtr4d φ k R k = × S k n 1 n k
90 61 63 69 72 75 79 87 89 climsub φ R S 0
91 64 subid1d φ S 0 = S
92 90 91 breqtrd φ R S
93 92 ad2antrr φ f : X k R k F f k R S
94 14 ad2antrr φ f : X k R k F f k F : X A
95 fex F : X A X V F V
96 94 1 95 sylancl φ f : X k R k F f k F V
97 vex f V
98 coexg F V f V F f V
99 96 97 98 sylancl φ f : X k R k F f k F f V
100 34 ad2antrr φ f : X k R k F f k R :
101 100 ffvelrnda φ f : X k R k F f k m R m
102 14 6 fssd φ F : X
103 fco F : X f : X F f :
104 102 103 sylan φ f : X F f :
105 104 adantr φ f : X k R k F f k F f :
106 105 ffvelrnda φ f : X k R k F f k m F f m
107 fveq2 k = m R k = R m
108 2fveq3 k = m F f k = F f m
109 107 108 breq12d k = m R k F f k R m F f m
110 109 rspccva k R k F f k m R m F f m
111 110 adantll φ f : X k R k F f k m R m F f m
112 simplr φ f : X k R k F f k f : X
113 fvco3 f : X m F f m = F f m
114 112 113 sylan φ f : X k R k F f k m F f m = F f m
115 111 114 breqtrrd φ f : X k R k F f k m R m F f m
116 30 ad3antrrr φ f : X k R k F f k m A A x y A y x
117 112 ffvelrnda φ f : X k R k F f k m f m X
118 94 ffvelrnda φ f : X k R k F f k f m X F f m A
119 117 118 syldan φ f : X k R k F f k m F f m A
120 suprub A A x y A y x F f m A F f m sup A <
121 116 119 120 syl2anc φ f : X k R k F f k m F f m sup A <
122 121 2 breqtrrdi φ f : X k R k F f k m F f m S
123 114 122 eqbrtrd φ f : X k R k F f k m F f m S
124 61 62 93 99 101 106 115 123 climsqz φ f : X k R k F f k F f S
125 124 ex φ f : X k R k F f k F f S
126 125 imdistanda φ f : X k R k F f k f : X F f S
127 126 eximdv φ f f : X k R k F f k f f : X F f S
128 60 127 mpd φ f f : X F f S