Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
supeq1i
Next ⟩
supeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
supeq1i
Description:
Equality inference for supremum.
(Contributed by
Paul Chapman
, 22-Jun-2011)
Ref
Expression
Hypothesis
supeq1i.1
⊢
B
=
C
Assertion
supeq1i
⊢
sup
B
A
R
=
sup
C
A
R
Proof
Step
Hyp
Ref
Expression
1
supeq1i.1
⊢
B
=
C
2
supeq1
⊢
B
=
C
→
sup
B
A
R
=
sup
C
A
R
3
1
2
ax-mp
⊢
sup
B
A
R
=
sup
C
A
R