Metamath Proof Explorer


Theorem supeq1i

Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis supeq1i.1 B = C
Assertion supeq1i sup B A R = sup C A R

Proof

Step Hyp Ref Expression
1 supeq1i.1 B = C
2 supeq1 B = C sup B A R = sup C A R
3 1 2 ax-mp sup B A R = sup C A R