Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
supex
Next ⟩
sup00
Metamath Proof Explorer
Ascii
Unicode
Theorem
supex
Description:
A supremum is a set.
(Contributed by
NM
, 22-May-1999)
Ref
Expression
Hypothesis
supex.1
⊢
R
Or
A
Assertion
supex
⊢
sup
B
A
R
∈
V
Proof
Step
Hyp
Ref
Expression
1
supex.1
⊢
R
Or
A
2
id
⊢
R
Or
A
→
R
Or
A
3
2
supexd
⊢
R
Or
A
→
sup
B
A
R
∈
V
4
1
3
ax-mp
⊢
sup
B
A
R
∈
V