Metamath Proof Explorer


Theorem supex

Description: A supremum is a set. (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis supex.1 R Or A
Assertion supex sup B A R V

Proof

Step Hyp Ref Expression
1 supex.1 R Or A
2 id R Or A R Or A
3 2 supexd R Or A sup B A R V
4 1 3 ax-mp sup B A R V