Metamath Proof Explorer


Theorem supfirege

Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Hypotheses supfirege.1 φ B
supfirege.2 φ B Fin
supfirege.3 φ C B
supfirege.4 φ S = sup B <
Assertion supfirege φ C S

Proof

Step Hyp Ref Expression
1 supfirege.1 φ B
2 supfirege.2 φ B Fin
3 supfirege.3 φ C B
4 supfirege.4 φ S = sup B <
5 ltso < Or
6 5 a1i φ < Or
7 6 1 2 3 4 supgtoreq φ C < S C = S
8 1 3 sseldd φ C
9 3 ne0d φ B
10 fisupcl < Or B Fin B B sup B < B
11 6 2 9 1 10 syl13anc φ sup B < B
12 4 11 eqeltrd φ S B
13 1 12 sseldd φ S
14 8 13 leloed φ C S C < S C = S
15 7 14 mpbird φ C S